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A brief history of work on the 4 x 4 magic square is presented, with particular reference
to Frénicle’s achievement over 300 years ago of establishing 880 as the number of
essentially different squares by using the method of exhaustion (not convincingly
repeated except by computer in 1976). He also established several central theorems.
Our paper confirms the number 880 by a wholly new method of ‘ Frénicle quads’ and
‘part sums’, which leads to the classification of all solutions into, initially, six ‘genera’
one of which has no members and thence to the enumeration of all possible solutions
by analytical methods only. The working leads also to the first analytical proof inde-
pendent of solutions that 12 and only 12 patterns formed by linking ‘complementary’
numbers within a square are necessary and sufficient to describe all solutions — a fact
which has been known since 1908, but not hitherto proved. A second method of con-
struction and partial proof, greatly shortened by what has gone before, is also described.
This yields a highly symmetrical list of the 880 magic squares. Together the two methods
combine to explain many of the special characteristics and otherwise mysterious pro-
perties of these fascinating squares. The complete symmetrical list of squares ends the

paper.

1. THE MAGIC SQUARE OF ORDER FOUR AND ITS HISTORY

A magic square consists of integers arranged in the form of a square so that the sum of these
integers in every row, in every column and in each of the two principal diagonals is the same.
Any square can be subjected to a reflexion and/or rotations through 90° without losing its
magic character. Squares are said to be essentially different if they cannot be transformed into
one another by rotations and/or reflexion. Every essentially different square can thus be
written in eight forms and a set of essentially different squares can be assembled in a great
variety of ways. If the integers forming a magic square are the consecutive positive numbers
from 1 to 2 inclusive, the square is said to be ‘normal’ and of the nth order. The sum of the
numbers on every row, column and the two principal diagonals is then easily seen to be
n(n®+1).

Over three hundred years ago Bernard Frénicle de Bessey (1602-1675) established that there
are 880 and only 880 essentially different normal 4 x 4 magic squares. Bernard Frénicle was
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‘conseiller du Roi en sa cour des monnaies’ and spent his spare time in research in numbers.
He was thus in the strict sense an amateur mathematician of distinction working in Paris
during the great period of French mathematics of the seventeenth century. He resurrected the
long-known but often rather despised ‘method of exhaustion’ to solve difficult arithmetical
problems. By considering general conditions for the 4 x 4 magic squares and excluding those
arrangements which cannot comply with these conditions, he progressively arrived at all
essentially different solutions. Frénicle’s list of solutions was first published posthumously in
1693 as an integral part of a substantial treatise entitled Des Quarrez ou Tables Magiques, one of
four treatises collected together by Phillipe de la Hire (1640-1718), a French geometer who
also interested himself in the construction of magic squares. The treatise was republished in Les
Mémoires de I’ Académie des Sciences in 1731 in the Hague* and it is this publication which is the
more readily accessible today.

Several of the properties of 4 x 4 magic squares are general and hold when numbers other
than 1-16 are used. It is however convenient here, except where otherwise stated, to speak only
of normal squares constructed from the numbers 1-16, or, alternatively, of the consecutive
numbers 0-15, so that the sum of the integers in the rows, columns and principal diagonals is
34 or 30 respectively.

There is a huge corpus of recorded work on magic squares spanning the centuries since at
least 2200 B.c. when the only ‘fundamental’ 8 x 3 magic square using the numbers 1-9 namely

2 9 4
7 5 3
6 1 8

which is known as the lo-shu, is said to have been brought to man by a turtle from the river Lo
in the days of the legendary Emperor Yu of China (Boyer 1968). A Jaina inscription of the
twelfth or thirteenth century giving the 4 x 4 magic square

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

was reported in 1904 as having been found in Khajurado, India. This square is said to be
pandiagonal or Nasik, sometimes diabolical. It has the property that not only do the numbers in
the rows, columns and principal diagonals add to 34, but so also do the numbers in the ‘short
broken diagonals’, namely, 2 125 15, 1 11 6 16 and those in the ‘long broken diagonals’,
namely, 7 6 10 11, 14 2 3 15, 4 16 13 1, 9 12 8 5. Pandiagonal squares are ‘continuous’. They
have the property that, if they are extended indefinitely by repetition or if wrapped round a
cylinder or if drawn on a torus, any square block of sixteen numbers so formed still remains
a pandiagonal magic square. If the short broken diagonals of a square add to 34, but not the
long broken diagonals, then the square is said to be semi-pandiagonal or semi- Nasik.

* Tt is a cause of satisfaction for us that our paper was completed just 250 years after this important event.

33-2
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A magic square is said to be symmetrical if each of those pairs of numbers which are sym-
metrical in the centre point of the square add to half the sum of the numbers in each row,
column and principal diagonal - here 17. The magic square shown below, seen in the famous

16 3 2 13

5 10 11 8
9 6 7 12
4 15 14 1

engraving entitled AMelancholia by Albrecht Diirer (1471-1528), plate 1, is symmetrical. Two
impressions of this engraving are in the British Museum. The square contains the deliberate pun
of the date of the engraving, 1514, appearing at the centre of the bottom row. From the list of
solutions in this paper it is easily checked that there are 32 essentially different magic squares
which can be written with the numbers 15, 14 in these positions, but only four of them, of which
Diirer’s is one, are symmetrical.

Another particular group of normal 4 x 4 magic squares will be shown in §6 to give the
essentially different solutions to the well-known problem of placing the sixteen court cards from
a pack in the form of a square so that no row, no column and neither of the two principal
diagonals contains more than one card of each suit and one card of each rank. In early editions
of his famous book Mathematical recreations and essays W. W. Rouse Ball (1850-1925) stated that
the ‘magic card problem is easily solved’ and gave one example. Later editions, including
a posthumous edition published in 1944 revised by H. S. M. Coxeter, stated incorrectly that the
number of essentially different solutions is 72, an error eliminated in the 1974 revised edition.
An easy independent proof that the correct answer is 144 is given in §6 and the actual solutions
can be quickly identified in the list of all solutions.

To complete the definitions, we call any two numbers in a square which add to 17, i.e. to
half the sum of the numbers in the rows, columns and principal diagonals, complements. Any
two squares are called complements if they can be obtained from one another by replacing
each number in one of the squares by its complement. The complement of a magic square is
also magic, and the complements of pandiagonal, semi-pandiagonal, symmetrical and ‘magic
card’ squares are also pandiagonal, semi-pandiagonal, symmetrical and ‘magic card’ squares
respectively, although not necessarily essentially different.

Before Frénicle’s time it had been thought that there were only 16 essentially different
normal 4 x 4 magic squares. His method of constructing his list, as well as giving a set of 880
solutions, also established that these are the only essentially different solutions. Work on magic
squares in the early 1900s and in the 1930s indicate a surprising ignorance of Frénicle’s
treatise and even sometimes of the existence of his definitive list. There are an astonishing
number of errors in the extensive literature, many of which would not have occurred had
correct ‘counts’ been made from his list of those squares with this or that special characteristic.
In particular, solutions which Frénicle classified as « fulfil the necessary and sufficient conditions
for a square to be pandiagonal and those which he classified as 8, y together define all semi-
pandiagonal squares. Frénicle stated correctly that there are 48 solutions with his classification
a, 192 with classification £ and 192 with classification y. The 48 pandiagonal and 384 semi-
pandiagonal squares have thus been in print since 1693 and readily accessible since 1731,
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Albrecht Diirer’s ‘Melancholia’ (The British Museum). Note the four-by-four magic square in the upper
right-hand corner in which the date 1514 appears in the two middle cells of the bottom row.

(Facing p. 446)
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MAGIC SQUARES OF ORDER FOUR 447

although incorrect statements about the number of pandiagonal squares appeared in published
literature as recently as 1933 (Lehmer 1933) subsequently corrected (Rosser & Walker
1938). ,

Frénicle’s method, leading as it does to a list which lacks symmetries and pattern, does not
lend itself to accurate counting of other interesting characteristics, as an example from the
published treatise of 1731 itself shows. Frénicle first found all solutions with the number 1 in an
outside corner; then all those with 2 in an outside corner (no solution can have both 1 and 2
or both 1 and 3 in an outside corner); then all those with successively 3, 4, 5, 6, 7, as the
smallest number in an outside corner. This completed the search since, as will be shown later,
Frénicle proved that the numbers in the four corners must add to 34. The resulting table is
given on the first page (p. 368) of the relevant section of the 1731 text and appears as below:

1. 208 208
2. 200 200
3. 204 166
4. 238 178
5. 216 64
6. 206 48
7. 230 16

Somme 880

The middle cglumn purports to show all solutions which contain the corresponding number
in the left-hand column as an outside corner of the square. The right-hand column shows the
number of all solutions for which the corresponding number in the left-hand column is the
smallest number in any of the four outside corners. The important right-hand column and the
resulting total number of solutions is correct. The less important middle column contains two
errors — the correct counts for those squares with 3 and with 6 in an outside corner are
respectively 202 and 228, not 204 and 206. These counts are easily verified in the symmetrical
list of solutions given in this paper, but are tiresome to verify from Frénicle’s unsymmetrical
‘sequential’ list.

More important than conflicting enumerations of subgroups of solutions is that not all
authors in the intervening years since 1693 have appreciated or accepted that Frénicle’s method
constitutes proof that there are only the 880 essentially different solutions — admittedly proof
which could be verified in pre-computer days only by repeating the whole arduous process of
step-by-step calculation which Frénicle almost certainly used, the task of checking for possible
omissions being as wearisome and requiring as much skill as the original working. W. S. Andrews
(1847-1929), in his considerable text Magic squares and cubes, first published in Chicago in 1908
and still much borrowed from public libraries in this edition, stated categorically that the
number ‘of diverse squares has been estimated by different writers as 880 ... it can however
be easily proven than no less than 4352 may be constructed ...’. By using Frénicle’s rules
(§2(d)) it is a simple matter today to program a computer to produce all possible solutions ~
using, essentially, Frénicle’s own method of exhaustion. In 1976 W. H. Benson and O. Jacoby
fed such a program into an IBM 1130 computer in Pennsylvania. The resulting total of
different solutions was 880, confirming Frénicle’s working. A computer print-out of these
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solutions is reproduced (in minuscule print) at the end of their book, New recreations with magic
squares (1977).

In a final chapter of his 1908 book, Andrews quotes a contemporary, L. S. Frierson, as
showing that there are ‘at least eleven different plans which can be used in corinection with
4 x 4 squares . .. which clearly differentiate the various types of squares’. These are the patterns
made by lines joining the eight pairs of complementary numbers within the square. There are
in fact twelve such patterns, one of which can be simply derived from the eleventh of those
Frierson depicted, but which he inexplicably missed. These twelve patterns are not only
necessary to describe the 880 solutions but sufficient.

In 1910, H. E. Dudeney (1857-1931) published in The Queen of 15th january a definitive
article on the 4 x 4 magic square, in which he describes how to construct all 880 with the help
of the twelve patterns, ending by saying, ‘I have thus provided the reader with a new and simple
method of writing out the whole of the 880 primitive solutions to this famous problem. More
than this it is not possible to obtain’. The Queen, which at that time described itself as ‘The
Lady’s Newspaper’, regularly published articles featuring mathematical puzzles edited by
E. Bergholt at the turn of the century much as the Scientific American does today. Dudeney begins
his article: ‘Bernard de Frénicle, between the years 1666 and 1699 [sic], investigated the
subject, and in a book published in Paris in 1729 [sic] gave a complete list of 880 such different
squares, which he declared to be all that exist. In 1886 these figures were confirmed inde-
pendently by Frolow and Delannoy ... So far as I know, the list has never been printed in this
country. The recent appearance in America of a book on magic squares, in which a writer
disputes Frénicle’s results, has led me to investigate the matter anew . ..’. Dudeney was clearly
referring to Andrews’s book (which some modern references give incorrectly as appearing first
in 1917) in which, as has been said, eleven of the twelve patterns had been given. Neither in
this article nor in his subsequent book Amusements in Mathematics of 1917 did Dudeney prove (or
specifically claim to prove, although he seems to imply this in The Queen as quoted above) that
there were only 880 solutions or that the twelve patterns are sufficient to describe all solutions
however many, but merely gave a method of construction of the 880 solutions which Frénicle (who
had died in 1675) had shown to be the only solutions. Dudeney’s method depended on there
being only the 12 patterns without this ever having been proved unless by checking against
Frénicle’s own list.

In May 1910, Bergholt published in Nature ‘A new and completely general formula’ for the
construction of magic squares of sixteen cells, giving as reference the re-publication of Frénicle’s
treatise in The Hague in 1731. This general form, reproducted by Ball, is the basis of most
methods of construction of 4 x 4 magic squares (not only normal magic squares formed by the
numbers 1 to 16) used by subsequent authors, in particular by Benson & Jacoby (1976).
M. Kraitchik in his Mathematical Recreations, published in America in 1943 and based on an
earlier book published in Brussels in 1930 and not now easily available, shows how to construct
the 432 pandiagonal and semi-pandiagonal squares and states the number of solutions in each
of five other categories which he defines, making in all the total of 880. There are over 400
separate articles on magic squares listed in W. L. Schaaf’s Bibliography of recreational mathematics
(1970, 1973, 1978). It would be a practical impossibility, and probably not particularly
profitable, to attempt to follow up so many references. Only those articles and books which
we have actually seen and which can be readily seen by other workers in the United Kingdom
are referred to here, the most recent of these being the 1976 book by Benson & Jacoby.
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MAGIC SQUARES OF ORDER FOUR 449

There is no great difficulty in constructing the 880 solutions by one or other of the several now
well-known methods, nor in proving from elementary considerations that there are 48 pan-
diagonal and 384 semi-pandiagonal solutions, nor indeed in constructing the 864 solutions not
deemed ‘irregular’. The problem arises of finding an analytical proof that there are 16 and
only 16 essentially different ‘irregular’ solutions and in understanding why, as some irregular
solutions exist, there should be only 16. Hitherto it would seem that the only proofs have been
Frénicle’s original proof by exhaustion and the similar computer proof undertaken by Benson &
Jacoby in 1976. In this paper, as well as giving two separate methods of constructing the 880
solutions, one of which leads to the symmetrical list, we give a completely independent analytical
proof of Frénicle’s result. The method leads incidentally to a proof (which may be the first in
existence which s independent of actual solutions) that the twelve patterns already mentioned are
necessary and sufficient to describe all solutions.

Our interest in this fascinating age-old problem was aroused in the first instance by a self-
imposed problem concerning the well-known Fifteen Puzzle or ‘Boss’. The boss is a toy which
enjoyed great popularity in the last century in which the numbers 1-15 are arranged in a 4 x 4
square box with the number 16 represented by a space. In the ‘normal boss’ the initial arrange-
ment is that of the ‘normal array’

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 (16)

with the number 16 missing. This normal array will be much used in what follows. The boss
puzzle is to arrive at any other pre-determined arrangement of the fifteen numbers when they
can be moved around only vertically or horizontally. The puzzle is fully analysed by Ball. Half
and only half of all possible arrangements can be achieved. The question arose whether all
magic squares, or if not all then how many, could be achieved with the normal boss, the space
being assumed filled by the number 16. An obvious hypothesis, which proves to be incorrect,
is that exactly half could be achieved. This required a list of all magic squares, or at least a way
of constructing such a list, with the greatest possible degree of symmetry.

One simple method seemed to be to work with the numbers 0 to 15 expressed in scale 4,
so that every solution must be a combination of two 4 x 4 matrices each of which is made up of
four each of the digits 0, 1, 2, 3 in some arrangement. Each cell of a completed square will then
contain two digits from among the sixteen different ordered pairings

00 01 02 03
10 11 12 13
20 21 22 23

30 31 32 33

each of these pairings occurring once and only once. These two arrays are equivalent, the
second being obtained from the first by subtracting 1 from each of the numbers 1-16 and
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expressing the resulting numbers 0-15 in scale 4. There is nothing new in this method of
presentation. Indeed, Ball uses it to describe several particular squares of order 4 and of orders
greater than 4. It forms the basis of our method used in constructing the list of solutions by the
‘matrix method’.

In the narrow context of finding all solutions to the magic card problem, this ‘matrix method’
led directly to the (correct) answer 144 as will be shown in §6. That this was not the accepted
answer as given by Ball was an irresistible incentive to continue with the method to produce a
complete list for its own sake (and usefulness in making other checks and discoveries) ; par-
ticularly when, at a much later stage of our work, it became apparent that no symmetrical list
seemed to exist and that even Frénicle’s (sequential) list of the 880 solutions is available in the
United Kingdom only in the British Library. The full list of solutions in 00-33 notation given
here, which exhibits their many remarkable symmetries, has been the firm foundation on which
all subsequent work in this paper was based and from which the analytical proof was developed.

We have had at our disposal two very different methods, each illuminating in its own way,
to arrive at a proof of Frénicle’s result: the ‘matrix method’ and the method we have come to
call the ‘Frénicle-quad and part-sum method’. After initial rapid progress each method, in its
turn, brought us up against the fundamental difficulty of establishing why there are 16 and
only 16 irregular solutions. However, the Frénicle-quad method proved much the more powerful
and has in addition certain important simplicities which give it a marked advantage in
enumerating the total number of solutions. In contrast, the matrix method, with its inherent
symmetries, is better for explaining certain facts (as well as in solving the ‘boss’ problem
which would not have yielded easily otherwise) — facts which might not have been understood
without matrices. In combination the two methods give the best of both worlds.

We have not tried to resist recording a number of the fascinating facts relating to these magic
squares which have emerged as the work has progressed. Many if not all will be known to others,
but each in turn was a new discovery for us and added to the delight and excitement of seeking
answers, as others have done through the centuries, to the many mysteries in the behaviour of
these first 16 positive integers when arranging themselves into what are truly called magic
squares.

2. THE GROUNDWORK
(a) Frénicle’s square
Frénicle established in elegant prose a set of conditions which hold for all 4 x 4 magic squares
and on which he based the logical deduction of his list of solutions by the method of exhaustion.

Out of sentiment and respect for his great achievement we use his lettering throughout for the
elements of any square forming a solution (the letter j is not used), namely, where the letters

a b ¢ d
e f g k
i kKl m
n o p g

represent the numbers 1-16 in some arrangement and so form eight complementary pairs of
numbers which add to 17. By definition the numbers in the four rows, the four columns and
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the two principal diagonals add to 34. We define as a ‘quad’ any set of four numbers chosen
from 1 to 16 which add to 34, the order of the elements in the quad being irrelevant, and we
call any two, three of four quads ‘compatible’ if they do not duplicate any number from 1 to 16.
Any set of four compatible quads, which by the above definition must contain each of the numbers
1-16 once and once only, we define as a quadset, the order of the quads in a quadset being
irrelevant. The rows of a magic square thus form a quadset and the columns another; so also
do the two principal and two short broken diagonals of pandiagonal and semi-pandiagonal
magic squares, and the four long broken diagonals of pandiagonal squares.

(b) Frénicle's rules

We give below Frénicle’s proofs that (i) the sets of four numbers (quads) adng, fgkl,
bcop,eihmin the magic square as depicted above (quads which we shall call, respectively, the
corner, centre, vertical and horizontal quads) also have the sum 34 and, being by definition compatible,
thus form a quadset which we call the Frénicle quadset; (ii) the sets of four numbers in opposing
‘petits quarrez des angles’ which we call Frénicle’s corner squares always have equal totals, that is,
at+b+e+f=Il+m+p+qandc+d+g+h = i+k+n+o,but these totals are not necessarily 34;
(iii) the sets of four numbers in opposing ‘quarrez de trois’ which we call Frénicle’s extended corner
squares likewise always have equal totals, that is a+c+i+/ = f+h+o+4+¢ and b+d+k+m
= ¢+g+n+p, but these totals are not necessarily 34; (iv) from this, if the numbers in any
one of the corner or extended corner squares add to 34, then the numbers in all eight add
respectively to 34, and so the corner squares and the extended corners squares (both of which
then form compatible sets of four numbers adding to 34) form quadsets.t

Frénicle’s proofs of his theorems are direct. First suppose that the sum of the four corners is
less than the required 34, so that a+d+n+¢ = 34 —e. Since the top row and bottom row each
add to 34 and thus their sum is 68, the other four elements involved must satisfy b +c+o0+p
= 34+¢. Similarly from the first and last columns ¢+i+ 4 +m = 84 +¢. On considering now the
sum of the two central rows (or columns), it follows that the central set f+g+k+{ = 34 —e.
But the two principal diagonals each add to 34, and thus the sum of the corners and the central
square, just found to be 68 —2¢, must be 68. Thus ¢ cannot be positive, nor, from the same
argument, can it be negative and (i) is proved. To establish conditions (ii), (iii), he notices that
both a+b+e+fand I+m+p+g when added respectively to ¢+d+g+4 total 68 and they are
therefore equal. Similarly the numbers in the other two opposing corner squares have equal
sums. Again, a+c+!+¢ and f+k+o0+p when added respectively to e+ g+n+p total 68 and
are thus equal; as are similarly the other opposing ‘quarrez de trois’, namely b +d +%+m and
¢+g+n+p. If the numbers in one corner square or in one extended corner square add to 34,
since the numbers in any two rows or in any two columns add to 68, it follows immediately that
the numbers in all corner squares and all extended corners squares add respectively to 34.
The full condition (iv) is then easy to establish.}

From (i) above, a set of ten Frénicle equalities immediately follow, namely a+d = o+,
btc=n+q;eth=k+l,f+g=1i+mja+n=h+tme+i=d+q;b+o =g+l f+k =c+p;

1 Surprisingly, Kraitnik (1938) states that these totals are always 34, whereas they are 34 only when the
magic square is pandiagonal or semi-pandiagonal.

1 Frénicle also made use of two other pairs of subsidiary 2 x 2 squares within the magic square: those formed
by the letters bc fg, klop, efik, g hlm. He uses them to describe his classifications «, 8, 7, 8 and ‘unmarked’
which are mentioned in §1 but which are not again referred to as they do not contribute to either of the methods
used here to prove Frénicle’s result.
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a+q =g+k, f+!=d+n When the equalities (iv) obtain, that is, when a+b+e+f
=c+d+g+h =i+k+n+to=I0+m+p+q =34, thenb+¢ =34—a—f=1+q = 34—m—p,
and c+4 = 34—d—g = k+n = 34—i—o0; so that the elements of the short broken diagonals
add to 34 and the solution, by definition, is either pandiagonal or semi-pandiagonal.

The Frénicle quads and the quadsets they define are of particular significance and importance
in all which follows. We need however to discuss further the properties of all quads and of all
quadsets in general.

(¢) Quads

There are 86 ways in which four numbers adding to 34 can be chosen from the numbers 1-186,
and thus 86 quads. They are listed in the different 1-16 and 00-33 notations in the two
halves of Appendix I for convenience and ready reference. There are three distinct groups of
quads. The first group consists of the 28 self-complementary quads, that is quads in which two pairs
of numbers within the quad add to 17. The second and third groups consist of pairs of mutually-
complementary quads, that is pairs of quads such that each number in one quad has its complement
in the other. The distinction between the second and the third groups (of 12 and of 17 pairs of
mutually-complementary quads respectively) is of great significance as will become apparent
later: a first and immediate distinction being that, whereas compatible pairs can be found to
form a quadset from within the second group, no pair of mutually-complementary quads from
the third group can form a quadset in conjunction with any other mutually-complementary pair
whether from the second or third groups. This remarkable and important distinction can be
easily checked from the list of all quads. A further distinguishing characteristic (used in
explaining the matrix method of proof) is that whereas the 28 self-complementary quads and
the 2 x 12 mutually-complementary quads of the secordd group when expressed in the 00-33
notation are each composed of four elements, the digits of which in otk the radix and the unit
positions are either 0123 or 003 3 or 1 1 2 2 respectively in some order, this property does
not hold for any quad in the third group. We shall show that no quad in the third group can
occur in any solution as a row, or as a column, or as a Frénicle quad (although all occur
somewhere in the full list of solutions as principal diagonals).

(d) Quadsets

A quadset may contain (a) at least three three self-complementary quads, then evidently the
fourth has also to be self complementary; () two and only two self-complementary quads,
then the other two must necessarily be a pair of mutually-complementary quads; (¢) no
self-complementary quads but at least one pair of mutually-complementary quads, then
it must consist of two pairs of mutually-complementary quads; () one and only one self-
complementary quad and no pair of mutually-complementary quads, in which case the three
non-self-complementary quads can be said to have ‘no complementarity’; (¢) no self-comple-
mentary quad and no pair of mutually-complementary quads, in which case the four quads have
no complementarity anywhere. We notice that quadsets which meet the conditions (), (b), (¢)
are themselves self complementary, whereas for any set in (d), (¢) there will exist an essentially
different complementary set within the same respective classification.

(¢) Part sums

We define as a part sum the sum of any two numbers within a quad whenever this sum is not
greater than half the sum of the numbers in the quad, i.e. whenever here the sum is not greater
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than 17. There are thus three different part sums in every quad, say a, 8, v, (which we define
as a triad), with their ‘supplements’ 34 —«, 34 — 8, 34 —y occurring in each case as sums of the
remaining elements. If a part sum equals 17 then so does another, and the quad is self comple-
mentary. Otherwise we can pair a quad with its complement (as earlier defined) to give a pair
of mutually-complementary quads. In particular, the triads of part sums for two mutually-
complementary quads are identical.

(f) Parities within quads

We establish first some simple properties concerning the parities of the elements in all quads
forming quadsets. First we notice that no two quads in a quadset can be composed of all odd or all even
elements, for the sum of all odd numbers 1+3 ... +15 = 2 x 32 and the elements of any two
quads together add to 68. Moreover, since the elements in any quad add to 34, the number of
odd elements must be even so a quadset containing just one quad with elements of the same
parity cannot exist. For consider the set of four triads forming the part sums for a Frénicle quadset.
An all-odd as well as an all-even Frénicle quad would have all three part sums even. Two all-even
triads are then impossible. For, if two triads have all-even part sums so that the part sum model
can be written as (2 2 2) (2 2 2) (1 1 2) (1 1 2) where here 1, 2 represent any odd, even number
respectively, the required links to give necessary Frénicle equalities within a solution, as explain-
ed in § 3 (a), cannot be formed. It follows, importantly, that

(i) no Frénicle quad can have elements which are all even or all odd, and hence, since their sum is even
(34), two must be even and two odd, and

(ii) triads of part sums of Frénicle quads must be such that two part sums are odd and one is even.

(&) Quads with a common part sum

A principal step in our later arguments is to prove that the Frénicle quadset of any magic
square always possesses a part sum common to all four quads. We find also that all rows and all
columns (and all diagonal quadsets in pandiagonal and semi-pandiagonal solutions and long
broken diagonal quadsets in pandiagonal solutions) also have respectively a common part sum.
It is convenient to discuss here the severe restrictions imposed by the existence of such a common
part sum on each quad of a quadset. We find that if this is less than 17, only the values 9, 13, 15, 16
are allowed and for each there are four and only four number pairs adding to the required total
that can be used in the construction (to be called ‘constructive’ pairs), and thus each of them
must be used, one for each quad, the same holding for their four ‘supplements’. If the common
part sum is 17 (so that every quad is self complementary) there are eight such number pairs,
two of which must be used in each quad.

To prove this statement call the common part sum s and consider the possibilities when
s < 17 (when s = 17 there is nothing to prove). For s < 17 to be a common part sum the
quadset must contain four pairs of numbers adding to s (one pair for each of the four quads of
the quadset) and four ‘supplementary pairs’ of numbers adding to 34 — s to complete the quads,
none of the sixteen numbers occurring more than once. If s < 9 there are fewer than four
different sets of two numbers adding to s and no common part sum is possible. If s = 9 there
are exactly four such pairs, namely those forming the constructive set given below. If s = 10,
11 or 12, there are at most five required partitions of s, at least two of which overlap with two
of the supplementary pairs 34 —s, leaving at most only three compatible pairs of numbers to
occupy four quads which is insufficient. For s = 13 with six suitable partitions, two overlap
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with 34 —s, leaving exactly the one constructive set given below. For s = 14 there are again
six suitable partitions, but now three overlap with the partitions of 34 —s, leaving only three
compatible pairs of numbers adding to 14 to occupy four quads. With s = 15 or 16, there are
seven suitable partitions of s of which three overlap with partitions of 34 — s, leaving respectively
the constructive sets given below. The statement is thus proved.

The constructive pairs of part sums

part sum 9 1 8, 2 7 3 6, 4 b5;
and supplement 25 16 9, 15 10; 14 11, 13 12;
part sum 13 1 12, 2 11; 3 10, 4 9;
and supplement 21 16 5, 15 6; 14 7, 13 8;
part sum 15 1 14, 5 10; 9 6, 13 2;
and supplement 19 16 3, 12 7, 8 11, 4 15;
part sum 16 1 15, 5 11; 9 17, 13 3;
and supplement 18 16 2, 12 6; 8 10, 4 14

If these part sums are ‘mapped’ on the normal array

1 2 3 4 00 01 02 03
5 6 7 8 10 11 12 13
or, in the alternative form,

9 10 11 12 20 21 22 23
13 14 15 16 30 31 32 33

they form the symmetrical patterns shown below where the symbols o also indicate positions
on the array.

(9) (13) (15) (16)

From this an easy check with the quad list confirms that all quads formed by constructive pairs
of numbers which sum to 9, 13, 15, 16, or to 17 as defined above, together with pairs of numbers
which are the supplements of these constructive pairs, are to be found in the second and first
groups of quads in the quad list. In other words,

(i) no quad in the third group of the quad list can be a component of a quadset for which the quads
have a common part sum.

Quads of the first group being self complementary necessarily contain two odd and two even
elements. We thus have

(ii) all quads of a quadset which have a common part sum, being from Groups 1 and 2 of the quad lists,
contain two odd and two even numbers and so two of their part sums must necessarily be odd and one even.
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This condition is much more stringent than that proved above for Frénicle quads only, for
some quads in the third group have two odd and two even elements but yet are not composed
of constructive part sums and cannot therefore, from the above, belong to a quadset the quads
of which have a common part sum.

(h) Transformations U, S, US

Before we turn to the main task of establishing the nature of all Frénicle quadsets, it is
convenient first to consider certain standard transformations which leave unchanged the magic
properties of any 4 x 4 magic square and also leave unchanged the Frénicle quadsets, the row
quadsets, the column quadsets and the two principal diagonals.

If the two inner rows and the two inner columns of a magic square are interchanged as
shown below, the transformation being labelled U, we have a square which is also magic.*
The new square is moreover essentially different from the first. Similarly the square resulting
from the transformation labelled S which effects interchanges between the numbers forming
the diagonals of the four 2 x 2 corner squares of the main square as indicated (as it were turning
the square inside out) is also magic and essentially different from either of the two magic
squares already shown. It follows that these two transformations, when carried out in succession,
result in a fourth magic square essentially different from the previous three. We thus have,
associated with any ‘lead solution’ placed on the left, a set of four essentially different solutions
of the form

U S UsS
b ¢ d e & b d FT e e f7 TR e
f & k i k- m \b a d ¢ \() q =n P
k1 m <e g f h o n q P (b d a ¢
o p g np o q (k i m 1 (k m i

Dudeney called the transformations U, S transpositions’ and ‘ruptures’ respectively. Lehmer
used the designations U, S, realizing (as had Dudeney some twenty years earlier) that this would
have enabled Frénicle to reduce his list fourfold to 220 solutions. We note that U causes an
interchange of the Frénicle corner and extended corner squares, leaving rows, columns,
principal and short broken diagonals unchanged, but internally re-orientated; and S leaves all
of these as well as the long broken diagonals intact, merely re-orientating them within the magic
square.

(¢) Complements

The complement of any magic square, that is, a square where every element is replaced by
its complement is also magic. A square may be self complementary (if its complement is merely
itself in a different orientation), or its complement may be obtained by the transformation
U or S, or its complement may be an essentially different square not obtainable by these
transformations.

* Curved lines are used throughout to indicate that whole rows/columns are interchanged while straight or
angled lines are used when required to indicate interchanges of individual pairs of numbers or (with matrices
later in this paper) of digits.
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(j) Reversals

In certain circumstances, when a magic square is expressed in the 00 to 33 notation, the
‘reversal’ throughout of the digits in the radix and unit positions will also give a magic square,
which, as with complements, may or may not lead by the transformations U, S, US to a new
set of four essentially different magic squares. The effect of reversing the digits of any number
0-15 thus expressed in scale 4 is to give its reflexion in the diagonal running from the top
left-hand to the bottom right-hand corner when all are arranged in the ‘normal array’ as
shown below:

reversal
00 01 02 03 00 10 20 30
10 11 12 13 01 11 21 31
20 21 22 23 02 12 22 32
30 31 32 33 03 13 23 33

Expressed in the ordinary 1-16 notation for magic squares, this is the transformation repre-
sented by a single reflexion in the main diagonal thus:

reversal
1 2 3 4 1 5 9 13
5 6 7 8 2 6 10 14
9 10 11 12 3 7 11 15
13 14 15 16 4 8 12 16

The transformation effected by ‘reversal’, when written in ordinary 1-16 notation, namely
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

is not as easily ‘seen’ as being potentially effective. In practice the use of reversals proved a
powerful method in producing the 00-33 symmetrical list of solutions, 256 essentially different
solutions being automatically obtained in this way from an initial 256 essentially different
solutions, as will be explained later when the list itself is being discussed.

(k) Quadsets formed by two pairs of mutually-complementary quads

Quadsets which consist of two pairs of mutually-complementary quads, that is, those which
belong to classification (¢) above, are of particular importance. There are six and only six and
they form three distinctive ‘associate’ pairs.t The quads of each quadset have fwo constructive
common part sums as just defined, no associate pair of quadsets sharing a common part sum.
In other words the two common part sums of the quadset and the two common part sums of its
associate are all different and thus, taken together, are 9, 13, 15 and 16. It is convenient to
establish these properties of quadsets formed by pairs of mutually-complementary quads here,

independently of what follows.
t These are the quadsets 11, I12; 113, T14; I15, 16 shown in Appendix IV.
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The six quadsets are all used as Frénicle quadsets, a property which holds only for quadsets
of category (¢), that is to say, for all other classifications there are quadsets which do not form
Frénicle quadsets although some of these occur as row-quadsets or column-quadsets. It will be
shown further, in the course of the argument developed in §3, that in all the 432 pandiagonal
or semi-pandiagonal magic squares, four of the five quadsets formed by the rows, the columns,
the principal and short broken diagonals, the Frénicle corner squares and the Frénicle extended
corner squares respectively form two (necessarily different) associate pairs from the three
associate pairs of quadsets referred to above.

We first find all possible compatible sets of four quads consisting of two pairs of mutually-
complementary quads. The first pair contains four numbers 1 € ¢ < u < v < w < 8 together
with their complements written as w’, v’, «’, ¢. To make two quads from these numbers either
(1) t+w =u+v (= z,say) sothatt,w,v’,u’ and u, v, w’, t' each add to 34, or (ii) u+v+w = 17 +¢
in which event the quads are u,v, w, ¢ and ¢, w’,v’,%’. (Since v +w < 15, the element added to 17
must be the smallest.) '

Note that when {+w = u+v, then t+u+v+w = 2z is even, whereas when u+v+w = 17 +¢
they sum to 17 +2¢, an odd number > 19. The other pair of mutually-complementary quads
involves similarly numbers between 1 and 8. Since 1+2+... +8 = 36, both pairs cannot be of
type (ii), since the sum would then be at least 38; nor can one pair of quads be of type (i) and the
other of type (ii), since then the sum would be odd. Thus both pairs must be of type (i). For the
second pair denote by Z the number corresponding to z. Since 2z + 2Z = 36,z+Z = 18. We may
choose z < 9 < Z. Moreover z > 5, for otherwise there are no two compatible pairs of numbers
adding to z. The complete range of possibilities (with choices which give no compatibility in
square brackets) is as follows:

z=5=1+4=243, Z=13=5+8=06+7, leading to the quadset

1 4 14 15 2 3 13 16 5 8 10 11 6 7 9 12
(5 15 16) (5 15 16) (13 15 16) (13 15 16) °

z2=6=[145] =[2+4], Z=12=[4+8] =[5+7], giving no compatibility;
z2=T=1+6=2+5=[3+4], Z=11=3+8=4+7=[5+6], leadingto

1 6 12 15 2 b 11 16 3 8 10 13 4 7 9 14

(7 13 16) (7 13 16) (11 13 16) (11 13 16) °
z=8=14+7T=[246]=3+5, Z=10=2+8=[3+7] =4+6, leadingto

1 7 12 14 3 5 10 16 2 8 11 13 4 6 9 15

(8 13 15) (8 13 15) (10 13 15) (10 13 15) ’

z2=9=2Z=1+8=247=3+6=4+5, all of which are compatible and leading to three
choices of quadsets, namely

1 8 10 15 2 7 9 16 3 6 12 13 4 5 11 14
(9 11 16) (9 11 16) (9 15 16) (9 15 16) °
1 8 11 14 3 6 9 16 2 7 12 13 4 5 10 15
(9 12 15) (9 12 15) (9 14 15) (9 14 15) °
1 8 12 13 4 5 9 16 2 7 11 14 3 6 10 15
(9 13 14) (9 13 14) (9 13 16) (9 13 16) °
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Thesesix are thus the only compatible quadsets consisting of two pairs of mutually-complementary
quads. The part sums are shown beneath the quads. For each quadset there are two common part
sums (which must therefore, as has just been shown, be two from 9, 13, 15, 16). The analytical
proof of this involves three alternatives and is not worth going through. The quadsets form
‘associate pairs’ having the important property that each element of a quad in one quadset of an
associate pair appears in one and only one quad of the associate quadset. The associate pairs can
be identified by their quads containing the element 1; namely the two quadsets containing the
quads 1 8 11 14 and 1 6 12 15 respectively; the two containing the quads 1 8 10 15 and 1 7 12 14
respectively; and the two containing the quads 1 8 12 13 and 1 4 14 15 respectively. They appear
in the list of all Frénicle quadsets labelled IT, to IT; in the order stated above.

We notice further from the arrangements on the array that each of the quads within the
quadsets and so each of the quadsets as a whole is reversible, that is to say, as has been explained
above, if the quadsets are turned through 90° on the array, they transform either into themselves —
remaining unchanged II,, IT, — or into their associate pairs - I1; into I1,, IT; into Iy and vice versa-
In analogy with the transforms U, S, US on solutions described earlier, if we perform these trans-
forms on the normal array itself to give the four different arrays

U S US
i 2 3 4 i 3 2 4 6 5 8 17 6 8 5 7
5 6 7 8 9 11 10 12 2 1 4 3 14 16 13 15
9 10 11 12 5 7 6 8 14 13 16 15 2 4 1 3
13 14 15 16 13 15 14 16 10 9 12 11 10 12 9 11

then, again, each of the quads of group 2 and so each of the IT-quadsets formed from them remains
invariant within the set of six IT-quadsets, S leaving the quadsets unchanged, U and US inter-
changing the two pairs of associate quadsets IT, with IT, and II; with IT,, while leaving the
associate quadsets IT;, ITg unchanged.

3. THE MULTIPLICITIES OF FRENICLE QUADSETS BY GENUS
(a) Constructing solutions — the cross

The four Frénicle quads have a vital characteristic additional to those of the other defined
quads within a magic square, namely that each row, column and principal diagonal is made up
of two pairs of numbers, each of which comes from a different Frénicle quad. Thus in the top
row of a magic square one pair of the numbers belongs to the corner quad; the other pair to
the vertical quad. In the bottom row, each pair of numbers is the supplement of the corre-
sponding pair in the top row. Thus the corner and the vertical Frénicle quads must have at
least one part sum in common, namely the Frénicle equality a+d = 0+ or its complement
n+q = b+c as described in §2 (b).

On applying the principle of the equality of part sums throughout, we readily arrive at the
following rules:

(i) the corner quad has each of its three part sums equal to and linked with a part sum of
each of the other three Frénicle quads;

(i) the same property holds for the centre quad;
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(iii) the vertical and horizontal quads each have a part sum in common and linked with the
corner and centre quads, but their other part sums need not be repeated.

It follows therefore that

(iv) a necessary (although not sufficient) condition for a quadset to form a Frénicle quadset
is that, of the four quads of the quadset, two and only two can have a part sum which is not
repeated elsewhere in the set.

We can thus describe a group of magic squares by its set of four Frénicle quads (quadset).
We note that a Frénicle quadset is invariant with respect to the transformations U (which
leaves each Frénicle quad unchanged) and S (which interchanges the roles of the Frénicle
quads but leaves the Frénicle quadset as a whole unchanged). Moreover, if the Frénicle
quadset is self complementary, it is invariant with respect to the replacement of the magic
square by its complement so that this replacement produces no new square. If the quadset is not
self complementary, replacing it by its complement produces an essentially different square.

Given any Frénicle quadset obeying the three rules for part sums stated above, a number
(to be called the multiplicity) of essentially different magic squares may be constructed from it.
To display the method of construction we arrange the part sums which are used in the form
of a cross as illustrated. In the centre we place the part sum used in the principal diagonal i.e.

corner and vertical
corner and horizontal corner and centre centre and vertical

centre and horizontal

that shared by the corner and centre quads; at the top the part sum shared by the corner and
vertical quads; on the left that used in the outer columns shared by corner and horizontal
quads, on the right that used in the inner columns shared by centre and vertical quads and at
the bottom that for the inner rows shared by centre and horizontal quads. Thus the corner quad
has the three part sums appearing toward the left top (including the centre) of the cross, the
centre quad has the three part sums toward the bottom right of the cross, the vertical quad has
the top and right as part sums and the horizontal quad the left and bottom as part sums.

To construct a magic square from the cross, it is perhaps easiest to start with the corner quad,

defined, as has been said, by the Frénicle quad supplying the three part sums appearing in the
top left of the cross. The four numbers of this corner quad should be arranged so that the pairs
of diagonally opposite numbers which we shall call the ‘diagonal’ part sum fit the part sum
placed at the centre of the cross, and the top (and bottom) pairs fit the part sum placed at the
top of the cross. Because of the complementarity this arrangement is not unique, but this does
not matter as the transformations of rotation and reflection take care of this. Next, put in the
centre quad to fit the diagonals and also take care to allow for any part sum which may be
shared with the vertical quad or with the horizontal quad, which happens if two opposite arms
of the cross are identical. There is still an ambiguity, but the choice can be made arbitrarily,
since the transformation U takes care of this. The vertical and horizontal quads are now readily
filled, completing the magic square.

As an example, consider the particular set of four quads given below which, as we can verify,
satisfy the necessary conditions given in §2 to form a Frénicle quadset leading to a solution.
The quads are written in such a manner that they can be respectively corner, centre, vertical

34 Vol. 306. A
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and horizontal quads in that order. The part sums are shown below their quads.

3 8 10 13 2 7 9 16 4 5 11 14 1 6 12 15
(11 13 16) (9 11 16) (9 15 16) (7 13 16)

To construct the cross, note that only the first and second quads can in this example be the
corner or centre quads, these being the only two having no unrepeated part sums. Which of
these two we choose for the corner quad and which for the centre quad is irrelevant as the
transformation S takes care of this. The only choice for the diagonal part sum is thus 11, since
otherwise we could not deal with the part sums 16 of the vertical and horizontal quads. Thus

the only relevant cross is
16

13 11 9
16

where the top and the bottom of the cross are identical because the part sum linking the quad
chosen as the corner quad to that chosen as the vertical quad is the same, namely 16, as the part
sum which links what must then be the centre quad to the horizontal quad — the part sum 16
in this instance being common to each of the four quads.

The stages in the construction of the magic square are thus

3 ° o 13 3 . ) 13 3 14 4 13
) ° . ° ° 7 9 ) 6 7 9 12
° ° o . o 2 16 U 15 2 16 1
10 ° o 8 10 L U 8 10 11 5 8

The part sums are thus crucial, the cement which holds a magic square together. Unhappily,
the analysis cannot be based solely on them. For, firstly, to any part sum triad not containing
17 there correspond two (mutually-complementary) quads rather than one; and, secondly,
more seriously, the compatibility of any quads resulting from a set of four part sum triads can
only be established by constructing the quadset which is therefore preferable as the primary

building block.
(b) The Frénicle-quadset genera

In §2(d) we defined six classifications for all possible quadsets. Consider now only Frénicle
quadsets. They, along with any other four compatible quads each of which has numbers adding
to 34, must conform to one of these six classifications. The first, namely (a) where the quadset
consists of four self-complementary quads, yields quadsets which, as will be shown later,
need to be divided into two distinct ‘genera’ for Frénicle quadsets which we name @ and @
respectively. Conditions () and (c) define genera which we call X, II respectively. The other
two conditions (d) and (e) give rise to Frénicle quadsets which we have named respectively A
and Q; A because this proves to be an empty category (the ‘lost’ genus), while Q is the ‘last’
genus. In all, 864 solutions belong to the four genera ®, @, X, II. To these 864, genus Q adds
a further 16 thus accounting for all Frénicle’s 880 solutions.
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We now consider, by using the cross, the construction of Frénicle quadsets of genera II, O,
®, X in that order, examining their multiplicities and their ‘ patterns’ defined by links between
complementary numbers within solutions, and establishing that all Frénicle quadsets in these
genera have quads with a common part sum as do all rows and all columns respectively. Similar
treatment for genera A, Q follows, but the proof that the quads of these latter quadsets have a
common part sum (which is the basis of our method of determining the population sizes)
requires additional considerations to those which suffice for the first four genera. Once the
existence of a common part sum for all Frénicle quadsets is established, their enumeration and
identification for each genus becomes a straightforward process of using the principles of the
‘constructive pairs’ of part sums 9, 13, 15, 16, 17 (§2(g)) in a manner which will be described.
This then gives the number of solutions belonging to each genus as required.

(c) Self-complementary quadsets

Genus I1. We define this genus as consisting of two pairs of mutually-complementary Frénicle
quads. Since the pairs of mutually-complementary quads necessarily have identical part sums
there can be no unrepeated part sums in genus Il quadsets. However, since both the corner
quad and the centre quad must be linked to all other quads in the quadset, the two pairs of
mutually-complementary quads must have {wo part sums in common. The part sum 17 does
not occur since no quad is self complementary. Moreover one part sum of each pair must be
individual to that pair, since no two quads can have all part sums identical unless they are
mutually complementary. Thus the part sum structure can be represented as (« fy) (a8 8)
(e By) (e f8), where each letter corresponds to a different number less than 17. No quad is
here specially qualified to contain the diagonal part sum, and the two quads which form a pair
are interchangeable, having the same part sums. The possible crosses are thus

) é ) 0%
Yy « v Yy B v a v B a & B
) 8 4 0%

The first two, evidently different from the second two, have one pair of mutually-complementary
Frénicle quads as corner and central quads respectively (and therefore their interchange is
already taken care of by S), whereas the interchange of the vertical and horizontal quads is
new. Thus, each of these has a multiplicity of 8. As regards the second pair of crosses, swapping
either mutually-complementary pair of Frénicle quads is novel, resulting in a multiplicity of
16 for each of the pair. The total multiplicity for genus Y1 quadsets is thus 48.

Consider now the patterns derived by linking each element of the magic square with
Frénicle quadsets of genus II with its complement.t The solutions derived from the first pair
of crosses can be represented diagrammatically by the patterns

(4)>< >< (5)
A X

1 The patterns which arise, 12 in all and well known, are shown in Appendix II.

34-2
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where the lines represent links between complementary numbers and the designations (4), (5)
respectively are those used by Andrews in 1908. We see that the transformation U acting on a
solution with pattern (4) results in a solution with pattern (5) and vice versa, and that the
transformation S leaves the patterns unchanged. It follows that each quadset derived from the
first pair of crosses produces 8 solutions with pattern (4), sometimes called ‘diagonal’ solutions
which are semi-pandiagonal, and 8 solutions with patterns (5) which are pandiagonal since the
four ‘long broken’ diagonals as well as the two short broken diagonals add to 34. For solutions
with patterns (4), (5) not only the Frénicle quadsets, but also the row-quadsets and the column-
quadsets, are formed by two pairs of mutually-complementary quads and must therefore form
a pair of quadsets from the three associate pairs of genus II defined (§2(¢)) each having two
common part sums. Moreover the Frénicle extended corner squares in solutions of pattern (4)
and the Frénicle corner squares in solutions of pattern (5) form respectively with the Frénicle
quads a second associate pair of quadsets of genus IT and thus also each have two common part
sums. The Frénicle corner squares in solutions of pattern (4) and extended corner squares in
solutions of pattern (5) together with the quadset formed by the principal and broken diagonals
form two quadsets in which all quads are self complementary and thus have the common part
sum 17.

For the second pair of crosses, where the corner quad and the vertical (or horizontal) quads
are mutually complementary, the solutions can be represented diagrammatically by the patterns

e~

the designations (1), (2) being those used by Andrews. Here, again the transformation U inter-
changes the patterns, whereas the transformation S leaves them unchanged. For these patterns
the row quadsets are self complementary and thus have the common part sum 17; the column
quadsets and ‘diagonals quadsets’ are formed by two pairs of mutually-complementary quads
and are thus of genus IT with two common part sums. Since the Frénicle corner and extended
corner squares have elements which respectively add to 34, the solutions are semi-pandiagonal
(§2()). Considerations similar to those for patterns (4), and (5) show that these patterns also
give rise to two associate pairs of quadsets of genus Il and two quadsets which are self comple-
mentary, all thus having respectively either two constructive common part sums or a common
part sum 17.

Genera @, ®

Next consider Frénicle quadsets composed of four self-complementary quads so that the
part sum 17 occurs in each quad. If the diagonal part sum can be 17, then the cross must be

o

g 11y
s
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so that the part sums can be represented as (a 2 17) (y 8 17) (ay 17) (8 & 17), where there is
no unrepeated part sum, and the common part sum 17 in the third and fourth (‘vertical’ and
‘horizontal’) quads is not used in the construction process. If the ‘diagonal’ part sum is taken
as a, so that the cross is

17

Aoy
17

leading to the part sums (a £ 17) (@ y 17) (p f 17) (8 vy 17), where p and & need not be equal,
we have a different set of criteria. Thus we define two distinct genera with four self-comple-
mentary quads forming the quadset: genus @ with no unrepeated part sums, and genus ®, say,
in which each of two quads has an unrepeated part sum.

Consider genus ©. If 17 is the diagonal part sum then the corner and centre quads can be
either the first pair, namely (« 8 17), (y 6 17), or the second pair, namely (ay 17), (88 17).
Moreover, when the corners themselves have been settled, the equality of the part sum 17 with
its complement (also 17) implies that the centre quad can be orientated in two alternative
ways. With the transformations U, S, we can thus arrive at a contribution of 16 to the multiplicity
JSor genus O quadsets from the cross with its middle number 17.

The solutions can then be represented by the pattern

‘

(6) a b ¢ d
e f & h

which can be written as .,

g I e

d ¢ bV o

where (6) is Andrews’s designation and &’ = 17— g, etc. These are the symmetrical squares and
are also semi-pandiagonal. The row quadsets and column quadsets, and the Frénicle corner
and extended corner quadsets form two associate pairs of quadsets of genus IT and thus each
have two common part sums. The ‘diagonals quadsets’ are self complementary and thus have
a common part sum 17.

If a part sum different from 17 is chosen from the diagonal part sum there are then four
options a, B, v, 4, but for each of these the contributing Frénicle quads are determined.
However, the occurrence of 17 as a part sum within the vertical and the horizontal quads as
shown by the second of the crosses above means that each of these four arrangements leads to a
multiplicity of 4 x 2 (from U) x 2 (from S) = 16. The solution can be represented diagram-
matically by the pattern

(3) — ——— a b ¥
— T 7
e f f e
which can be written as
— T P k kl ir
— T T n 0 o n’
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where Andrews’s designation (3) is used and a +f = k+n. Of these 4 x 16 = 64 solutions 2 x 16
will be semi-pandiagonal with 5 +¢ = ¢+0and 2 x 16 = 32 will not be so. For, if we interchange
the two middle numbers of the top and the bottom rows, or interchange the two middle
numbers within the outer columns thus:

N

while a semi-pandiagonal with pattern (3) remains magic and still retains pattern (3), its semi-
pandiagonal property is destroyed. Making the two pairs of interchanges in succession restores
this property, the Frénicle quads having remained unchanged throughout. The total multiplicity
Sor genus O has now emerged as 16 +4 x 16 = 80.

Solutions of pattern (3) have rows which are all self-complementary quads and thus have
a common part sum 17, and column quadsets formed of two pairs of mutually-complementary
quads which thus have two common part sums. The ‘ diagonals quadsets’ of the semi-pandiagonal
solutions with pattern (3) are also formed of two pairs of mutually-complementary quads and
thus form with the column quadsets associate quadsets of genus II. The Frénicle corner and
extended corner squares then also form associate quadsets of genus IL. The quadsets in genus @
and so also the related solutions are all reversible.

Consider now genus ®, namely quadsets with four self-complementary quads and two
unrepeated part sums. The diagonal part sum must be « as shown in the second of the two
crosses shown above, since the vertical and horizontal quads are the only permissible homes for
the unrepeated part sums. Again, the occurrence of the part sum 17 produces the multiplicity 16
and the resulting solutions have the pattern (3). Since, here, the vertical and horizontal quads
do not have a common part sum other than 17, they cannot be semi-pandiagonal. None of the
Frénicle quadsets of genus @ are reversible and so none of the solutions are reversible; the rows
have a common part sum 17 and the columns, being two pairs of mutually-complementary
quads, have been shown to have two common part sums. The diagonals do not form part of a
quadset.

Genus X

Next consider Frénicle quadsets composed of two self-complementary quads and one pair
of mutually-complementary quads. The first two share the part sum 17, the other pair has
identical part sums all less than 17. This second pair cannot contain the diagonal part sum, for
otherwise their other two (identical) part sums would have to link them to the part sums
different from 17 in the first pair, giving both of them identical part sums which is not allowed.
If the two self:complementary quads both contain the diagonal part sum then this diagonal


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGIC SQUARES OF ORDER FOUR 465

part sum must be 17 and the part sum model must be (« 8 17) (ay 17) (@ B y) (a ) giving
the cross

a

g 17 vy

a

Call any part sum which occurs three times only a ¢riplet. We shall find in §4 (5) that no solution
with a Frénicle quadset of genus X can exist for which the quads have a common part sum
(here &) and in which there are two triplets (here f, y) and this model therefore leads to a nil
set. The alternative possibility is that the diagonal part sum arises from one of the self-
complementary quads and one of the pair of mutually-complementary quads. The part sums
can then be represented by (¢ fy) (a f17) (e f7v) (w f 17), giving the cross

I

17 o v

B

We note that the part sum £ occurs four times and is thus a common part sum, while a occurs
three times forming a triplet, one of the as, together with w, being unused in the cross. For the
multiplicity we arrive at a factor 2 each from the occurrence of the part sum 17, from the
interchange of the two mutually-complementary quads (which, since one is on the diagonal
and the other is not, is not duplicated by S), from U, and from S, giving a total multiplicity 16.
The links between equal part sums show that all the rows must be self complementary. Since
the corner quad or centre quad is self complementary we have thus only four choices of patterns
namely,

(7) | (9) U (8) S (10) US

R N —_— — —_—
— — T - [ T~
e e e~
_— _ — — —_—

These are the patterns numbered as shown by Andrews. They form a set of four obtained from
one another by the transforms U, S, US. Inspection makes clear that not only do the Frénicle
quadsets have the common part sum £ of the part-sum model (in the Frénicle general square
notation we have here a+n = f+k, etc.) and the rows being self complementary have the
common part sum 17, but the columns as indicated in the first two diagrams also have the
same common part sum as the Frénicle quadsets, having however no complementarity. The
quadsets are reversible when and only when the elements in the principal diagonals are
reversible (and then form the solutions shown in Category Two of the solution list).
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The multiplicities for the solutions whose Frénicle quadsets are of genera II, @, ®, X are thus
48, 80, 16, 16 respectively. We shall find that they give 864 solutions in all, 48 solutions of each
pattern (4), (5), (6); 96 of each pattern (1), (2); 304 of pattern (3), 192 of these latter with
Frénicle quadsets of genus ® and 112 with Frénicle quadsets of genus @ ; and 56 of each of the
patterns (7), (8), (9), (10). All solutions with these patterns are thus accounted for, but this is
not proved until all other possible additional solutions are shown to have patterns different
from these ten.

These 864 solutions with Frénicle quadsets as defined by the four genera we call regular (in
contrast to the remaining solutions which are known in the literature as irregular). As has been
shown, the regular solutions have patterns which are symmetrical about both the vertical and
the horizontal central axes of the solutions. More importantly for our purpose, it follows from
their definition that their Frénicle quadsets (and their rows and columns respectively) are
composed of quads having a common part sum. It is this property of their Frénicle quadsets which
makes their identification (and hence the enumeration and construction of the 864 solutions)
a simple matter, as will be shown in §4.

(d) Non-self-complementary quadsets

We have still to consider possible solutions whose Frénicle quadsets belong to the two
remaining classifications, namely (d) having one self-complementary quad, the other three
having no complementarity, which we have called genus A ; and (¢) having four quads with no
complementarity anywhere, which we have called genus Q. For these genera it is not self-
evident from the part-sum models for possible Frénicle quadsets (as it was for those of the first
four genera just considered) that the quads must have a common part sum, a property which,
as has already been said, makes enumeration and identification simple. The rest of this section
is devoted to establishing this property for the two remaining genera.

Our proofs are based on the complementarity links between elements within and between
quads. It is helpful to list a number of lemmas, some so obvious that no proof is given.

(1) If there is at least one link within a quad, then there are two and it is self complementary.
This clearly applies to any ‘line’ within a solution, that is, to any row, column or principal
diagonal whose elements must add to 34, as well as to Frénicle quads.

(i) If there are at least three links between two quads, then there are four links and the
quads are mutually complementary.

(ili) If there are two links between two Frénicle quads whose elements together form two
lines then they cannot connect two elements of one quad lying along the other line. For example,
on using the established Frénicle notation

a b ¢ d

n 0 P q

for the elements of a solution, since a+¢ = g+£, the elements 4, g and %, ¢ cannot be comple-
mentary links adding to 17.
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(iv) If two non-self-complementary quads are not mutually complementary, a further set of
double links as illustrated below together with their reflections, rotations and transformations
by U, S are also precluded,

N

the first three because completing the links along the diagonals makes the two (corner and
centre) quads mutually complementary (the second is the U transform of the first), and the last
two which are S transforms of one another because

a b ¢ d

17—¢ o ° °
17—h e . .

n [ ] [ ] q
gives a+n = c+b = 34—a—d = n+g, thatis, a = ¢ which is precluded.

Genus A

Consider now possible Frénicle quadsets of genus A. Take any one of the three non-self-
complementary quads. Its four elements require four complements with the quadset none of
which can lie in the quad itself (for otherwise it would be self complementary) nor in the self-
complementary quad which contains all its own complements; nor can more than two lie in
either of the two other quads for then there would be a mutually-complementary pair. Thus
each of these three quads must be ‘double linked’ to the other two, and it follows that the
three then share a part sum. The part sum model can then be written either as (¢ fy) (2 8 ¢)
(e £ 8) (v € 17) where the three non-self-complementary quads must necessarily have a part sum
in common but this is not shared with the self-complementary quad; or as (x fvy) (a 8 6)
(& f) (ay 17), where there is a part sum in common. We are concerned here to eliminate the
first possibility. The self-complementary quad has 17 as a part sum unrepeated elsewhere and so
cannat be a corner or central quad. Without loss of generality, we may take it to be the
horizontal quad. The exclusions illustrated in (iii) and (iv) above show that the double link
between the corner and central quads (which must be two quads from the three quads with the
shared part sum and thus must share a part sum) cannot involve two adjacent corners. The
only possibilities which we seek to exclude must thus have links

N
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which are the U transforms of one another and do not have to be dealt with separately. On
following the rules of exclusion shown earlier, the only possibilities for the completion of the
double links are thus

A(a) \ A(b)

For neither A(a) nor A(d) do the quads of the Frénicle quadsets have a common part sum.
However the rows of A(a) have a common part sum, as have the columns of A (), for if one row
contains the complements of two elements of another row, then the sum of those two elements
is the same as the sum of the remaining two elements of the first row mentioned. Hence, from
the arguments of §2 (viii), each row of A(a) and each column of A(d) must consist of two
even and two odd numbers. On remembering that linked (complementary) elements have
opposite parity and that the sum 34 requires 0, 2 or 4 elements of each parity, the potentially
possible patterns A(a), A(b) are readily seen not to be possible. For, write 1, 2 todenote numbers
of opposite parity, then the top row of A (a) can take one of the three forms 112 2,1221,1212,
On using only the direct links, we then have

1 1 2 2 1 2 2 1 1 2 1 2
° 2 2 ° ° 2 1 ) ° 2 1 °
) . ° . ° ° ) . ° ° ° °
1 1 ° ° 1 2 ° ) 2 1 ) °

The first of these fails because the outer elements of the second row must have the same parity,
which means that the inner elements of the first column cannot have the same parity, and the
opposite argument rules out the third alternative. In the second alternative it is impossible to
choose the parity of the second element of the third row to suit both the column and the diagonal
in which it lies.

For A(b), the skeleton squares can be taken as having even/odd elements as shown:

1 1 . ° 1 2 . ° 1 1 ° °
1 2 ) 1 2 2 ) 1 2 ) ° 2
2 ® . 2 2 ° ° 1 1 ° . 1
2 ° ° ° 1 ° . ° 2 ° ) °
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where the columns must all have two odd and two even elements, and the rows and the Frénicle
quads must all add to an even number. It is quickly seen that these rules cannot be satisfied.
This has thus established that if a solution has a Frénicle quadset of genus A, then the quads
forming the quadset have a common part sum.
We shall find in the next section that there are no solutions which can satisfy these conditions.
We need not therefore concern ourselves with hypothetical possible patterns or with their
multiplicities.

Genus Q

Finally, consider possible Frénicle quadsets of genus Q, in which the quads have no comple-
mentarity anywhere. The four complements of the elements of any one quad may be distributed
over the three others either as (2, 2, 0) or as (2, 1, 1). These linkages can be combined easily
into two arrangements: either each quad is double linked to two of the others (ensuring a
common part sum for all quads); or there are two pairs of double-linked quads, all other links
being single and then there need be no common part sum. It is the possibility of there being no
common part sum which we have to examine and dismiss.

The most general part sum model for Frénicle quadsets of genus Q is (@ ) (x € ) (fep)
(y 7 0) where no two triads are the same (thus ensuring that no two quads are mutually
complementary), and no part sum equals 17 (thus ensuring that there is no self-complementary
quad). The triads are to be regarded strictly in order as the part sums of the corner, centre,
vertical and horizontal quads respectively. The interchanges (i) # with y, € with 3, p with
d swap the last two quads, that is the vertical and horizontal quads; (ii) p with ¢, ¥ with
7 swap the first pair (corner and central). Both (i) and (ii) leave the set of four triads
unaltered.

Consider coincidences between part sums. If ¢ = p = dorif f = gorif y = ¢, there is a
common part sum (but no triplet) and, in our endeavour to exclude the possibility of there
being no common part sum, these need not be considered further. Some other coincidences are
forbidden since no triad may contain a repeated part sum. Permitted coincidences not leading
to a common part sum are only p(# §) = aoryor 5; and §(# p) = aor for ¢, each of these
conditions leading to a triplet. Although each singly is possible, only a few combinations can
occur.

A common part sum can only fail to exist if there are merely two double links between
Frénicle quads, since the alternative, four double links, ensures a common part sum. Suppose
first that the two double links are between the corner and central quads and between the
vertical and horizontal quads. Since the corner and central quads cannot have a part sum other
than o in common, the double link must be on a line linking the two quads, that is, on a diagonal
which can be chosen to be ¢ f/¢. On applying, if necessary, the transformation U, the links
can be made a+f = 17 and [+ ¢ = 17 respectively, taken as
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From Lemma (iv) the double links

and their transforms by S, namely
[ ] L] [ ] [ ] L] L] [ ]

are excluded. Nor can the double link between the vertices and horizontal quads together with
the double link above be

for then the only possibilities for the single links between the corner and vertical quad and
between the corner and horizontal quad give

) N

or

N

the first of which goes out at sight because of the incompatibility of the top row and first
column, and the second of which goes out since, on using the equality of Frénicle opposing
corner squares, these would be

o o 17—g 17-b

4 e 17-¢ ¢
giving 2(b+¢) = 34 which is precluded. There remain only two other possibilities which go out
equally simply:

>< e e  whichcanbe ><
completed
® °
>< only as ><
[ ] [ ]
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where the top row and the second column are incompatible, and

[ ] [ ]
\' ®  which can be completed only as
[ ] ®

where the first and second columns are incompatible.

Alternatively the double links may be between the corner and vertical quads and between
the central and horizontal quads. This alternative requires rather longer treatment. Suppose
initially that the first pair shares only one part sum, namely £, and further that the second pair
share only the one part sum #. Then the double links must make one outer and one inner row
self complementary. On using, if necessary, a 180° rotation, we can make these the first and
third rows. The four single complementary links between elements of the four quads then
result in ‘single shift’ links between the now mutually-complementary second and fourth rows.
If we omit the mirror images, the only potential patterns are then sufficiently

where here the symbols e, x indicate what are, as can be seen from the linkages, incompatible
columns and/or diagonals, showing that all four patterns must fail.

Next we consider what happens if the vertical quad shares a second part sum with the
corner quad, the double links between the two creating the second shared part sum. As pointed
out above, this means that either p = « or p = y. Now p is the sum of two elements of the
vertical quad neither in a row (which would give £) nor in a column (which would give ¢),
and thus are joined by links in a skew direction. In the outer quad, « is the sum of two elements
in a diagonal. Thus the only double links which become possible with p = « must be

[ ] [ ] [ ]
[ ] [ ] [ ] [ ] .
or its U transform °
[ ] [ ] [ ] [ ] [ ]
° \ °

or their reflexions in the vertical through the centre of the square. Similarly the double link
which becomes possible with p = y must involve two elements of the corner quad in a column
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since y links the corner and horizontal quads. The links which then arise are thus

If there is no second shared part sum between the central and horizontal quads, their double
links fill a row and we have just four essentially different possibilities (together with their
reflections and U and S transforms which do not need to be treated separately), namely,

(b) ¢t (C);i W@
[ ] [ ] [ ] \ [ ]

Finally we have to examine the possibilities when the corner-vertical and the centre-horizontal
pairs each have a second shared part sum which are thus occupied by their respective double
links. For the centre-horizontal pairs the possibilities are & = & or & = ¢, the corresponding
diagrams being readily derived from those above by transformation S. We note however that,
ifp = a then § = a can be excluded as this gives a common part sum. We need therefore only
to consider either p = &, § = e;orp = v, = ¢, since p = y,d = ais equivalent to the first
of these by transformation S. We thus arrive at the set of potentially possible linkages:

@)\ °

(e) L] L] (f) [ ] ®

N NN

This exhausts all possibilities for solutions with Frénicle quadsets of genus Q the quads of which
would not have a common part sum. We thus have twelve essentially different skeleton patterns
to demolish.
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The last eight, (¢)—(m) above, can be ruled out immediately by a simple process. We recall
that since all lines in a square must add to 34, the elements in these lines must be all even, or
all odd, or two odd and two even. We have shown in §2 (f) that no two rows and no #wo columns
can be all even or all odd. We have also shown that all Frénicle quads must have two odd and
two even elements. As earlier, write 1, 2 to denote numbers of opposite parity, then the corners
of any square can be written sufficiently in one of three ways, namely

{1 o o 1 @)1 o o 2 (i)l e o 2
° ° ° ° ° ° ° . ° ° ° °
° L] L] [} [ ] L] [} [ ] [ ] [ ] [ ] °
2 o e 2 1 o o 2 2 o o 1

Consider then the possibilities for a square based on (¢) above. With (i), the top and bottom
rows would be all 1 and all 2 respectively, and the two middle rows must also be all 1 and all 2
respectively which is ruled out. With (ii), we arrive at

1 2 1 1

2 . 1 1 x ] 2
or

2 1 e 1 1 2 e 2

1 2 1 2 1 2 1 2

and the gaps cannot be filled without breaking the rules stated above. With (iii), we can start
with

1 1 1 2 2

1 2\ 2 ° °
or

2 1 1 x 1

2 2 2 1 1

and there is failure at the position of the cross. All the other seven skeleton patterns lead
similarly to total failure.

The skeleton patterns (a)—(d) require more detail. Consider (a). The links to comply with the
conditions for genus Q can be made in two ways, namely
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the second of which fails because the first two columns are incompatible. The first can be
written as
a b ¢ d

e 17—e¢ 174 h
17—-d 17—p 17-n 17—b
n 17—a Y/ 17—¢
From the bottom row, a diagonal, the last and the third columns, we have respectively,
a+c=n+p, d+n =h+p, d+h =b+c c+p = h+n; whence d+p = b+n, which with
d+n = h+pgives2d = b+h. Also 2p+n+h = a+c+d+n, whence 2p = 34—b—h = 34 —2d,

giving p+d = 17 which is precluded.
Now consider (5). The links can be made in two ways here also, namely

The first of these can be written

a b ¢ d
¢ 17—e 17—h h
17—d 17—¢ 17—n 17—o0
n 0 17—a 17-)
where Frénicle corner squares and the bottom row give 174+a+b = 68—b—n—0 = 68—a—b
—a—b, giving 3(a+b) = 51, whencea+5b = 17 which is precluded. The second can be written
a b ¢ d
e 17—¢ 17-h )/
17—0 17—¢ 17—d 17-n
n ] 17—a 17-5
where the corners and the third column give a+d+n = 17+b and a+d+h = 17+¢, given
n—h = b—c¢ = c—d by a diagonal, giving 2¢ = b +d; and the first column and the corners give

a+e+n = 1740 and a+d+n = 17+5, giving ¢e—d = 0—b. But, from the second column,
b+o = e+c, giving 26 = ¢+d, whence b = ¢ which is precluded.


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"
I— %

>~
O H
<=
= O
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGIC SQUARES OF ORDER FOUR 475

For (c), the possibilities from (i) are

the first of these linkages gives a+4 = 0+¢ = k+/ and the Frénicle equalities give k+7 = ¢+ £,
whence the rows have a common part sum. Similarly in the second, the links give a+6 = o0+¢
= ¢+m and the Frénicle equalities give i +m = f+ g, whence again the rows have a common
part sum. But we have shown in Part Two that in all quadsets in which the quads have a
common part sum the quads have two even and two odd elements. The top and the bottom
rows of both the above linkages transgress this and thus rule out these possibilities.

The possibilities for (ii) would be

1 2 1 2 1 2 1 2
2 1 2— 1 1 2 1— 2
2 2 1 1 1 1 2 2
1 1 2 2 1 1 2 2
and for (iii)
1 1 2 2 1 1 2 2
12—t —No 19
1 1 2 2 2 2 1 1
2 1 2 1 2 1 2 1

All four of the above are instantly ruled out because the Frénicle diagonal equalities a+¢
= g+k, d+n = f+! cannot be achieved with these parities.

35 Vol. g06. A
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Finally, for (d), the possibilities are

(i) 1 1 1 1 1 1 1 1

2 1/ 1 2 1 2/ 2—1

1 2 2 1 2 1 1 2

2 2 2 2 2 2¥2
(i) 1 1 2 2 1 1 2 2 (i) i 2 1 2 i 2 1 2
1 2/ 1— 2 2 1/ 2—1 1 2/ 1—2 2 1/ 2—1
1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2
1 2 1 2 1 2 1 2 2 2 1 1 2 2 1 1

The link between the corner and centre quads in the first two squares can be only as shown and
the remaining (fourth) centre elements have no vacant permissible link to the vertical quads.
The last four possibilities are ruled out because the Frénicle diagonal equality a+¢ = g+k as
above cannot be satisfied with these parities.

This then concludes the proof that all Frénicle quadsets of genus Q must have a common part
sum. It establishes further that the only successful Frénicle quadset of genus Q leads to the part
sum triads (e fy) (ey ) (8yp) (yyd) with y the common part sum, p, ¢ the unrepeated
part sums and no triplet. Moreover, since there are no interchangeabilities other than those
taken care of by the transformation U, S, US, the multiplicities for Frénicle quadsets of genus Q is four.

We still need to determine the potential patterns for solutions with Frénicle quadsets of
genus Q. They arise from the quadsets themselves which we now know must have quads with
a common part sum and which cannot be such that the double links between two pairs of quads
(which must exist) are between the corner and centre quads and between the vertical and
horizontal quads. The double links must therefore be between the corner and vertical (or
horizontal) quads and between the centre and horizontal (or vertical) quads. The possibilities
together with their U transforms are therefore sufficiently represented by

\

where the two rows marked by the symbols o, x are self complementary and have links
or — == in some combination. The techniques used earlier in this
section eliminate very simply all these possibilities other than

or its U transform
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Here the rows have a common part sum, as do the columns since these latter form two pairs
of mutually-complementary quads. These two surviving patterns for solutions are those named
by Andrews (11), (12). They complete the set of all possible patterns for solutions, thus now
proved to be necessary and sufficient without any recourse to discussion or knowledge of actual
solutions. As far as we are aware, this is the first ‘independent’ analytic proof of the existence of
twelve and only twelve patterns. As solutions with Frénicle quadsets of genus A will be shown
not to exist, the work of this section has proved incidentally that

In all solutions the Frénicle quads, the rows and the columns have respectively at least one common part
sum.

4. ENUMERATION OF THE FRENICLE QUADSETS
(a) Populations

We have seen that any magic square must belong to one of the six genera and that each genus
has a particular multiplicity so that the number of magic squares with Frénicle quadsets of a
particular genus is its multiplicity multiplied by the number of essentially different Frénicle
quadsets (the ‘population’) satisfying the characteristics of the genus. Frénicle quadsets of
genus II have been shown to have quads with two common part sums less than 17, while
Frénicle quadsets of genera X, A, Q have quads with one common part sum less than 17. For
Frénicle quadsets of genera @, ® the common part sum is 17.

(b) The populations for genera 11, X, A, Q — the arrays

Here the common part sum must be 9, 13, 15 or 16 (§2(g)) and each Frénicle quad must
contain one out of four ‘constructive’ number pairs adding to the relevant part sum together
with one out of the four number pairs which are their complements, each of the pairs occurring
once and only once in each quadset. Call the constructive number pairs of the table in §2 the
‘first number pairs’ and the set of four number pairs which are their complements the ‘second
number pairs’. Then for each of the four relevant part sums we can construct a 4 x 4 array of
quads, each row consisting of quads containing the same first number pair and each column
consisting of quads containing the same second number pair. Each of these four arrays then
contains all quads which have constructive part sums 9, 13, 15, 16 respectively. The arrays are
shown on a pull-out page (Appendix III), the part sum being written beneath their quads,
and supplemented by parallel arrays showing the regularities of the appearances of the part
sums other than the relevant part sum common to all quads in the array concerned. The nature
of the arrangement of the quads within each array as described above decrees that a compatible
set of four quads must contain one and only one quad from each row of the relevant array and
only one from each column.

Call the principal diagonal which runs from the top left-hand corner to the bottom right-hand
corner of an array the main diagonal. We see that the quads in a main diagonal, being self-comple-
mentary, must have 17 as a part sum. Quads symmetrically placed about a main diagonal are
mutually complementary and thus have identical part sums. Quads linked by a line parallel
to the main diagonal also share a part sum, as do quads linked by a line parallel to the other
principal diagonal, so that a lattice structure results.

35-2
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Genus 11

Each Frénicle quadset of genus Il has two common part sums (§2 (7)) and must therefore
appear in both of two arrays. In each array the quads must be symmetrically placed aboutthe
main diagonal in two (mutually-complementary) pairs. There are only three possibilities for
this (since one quad of the quadset must lie in each row of the relevant array and one in each
column), namely those which form the patterns indicated by the symbols @, X, A

e @ o o e o X o e o o A
@ ¢ o o ° e o X o o A o
° ° s O X e . . e A o °
° e @O o ° X e (] A o ° °

The connections being lattice lines show that the necessary equality of the part sums is assured.
Thus each of the four common part sums 9, 13, 15, 16 can give rise to three quadsets of genus II,
resulting in 3 x 4 = 12 quadsets, but this has to be divided by 2, since each quadset appears in
two different arrays corresponding to the two common part sums. This confirms that the
population for Frénicle quadsets of genus II is six. Since the multiplicity, as has been shown, is
48, the total number of magic squares arrived at is 6 x 48 = 288.

Genus X

Here there are two self-complementary Frénicle quads, necessarily lying on the main
diagonal of relevant arrays, and a pair of mutually-complementary quads symmetrically placed
about it. Furthermore, one of the self-complementary quads must share a part sum with the
pair of mutually-complementary quads to give at least one triplet. If those three are on a lattice
line, that is, forming the patterns

e * < °
e X o @
X o @ o
° [ ) o X

a quadset of genus X necessarily results, the three like symbols on a lattice line giving the
required triplet. Since each of the four arrays gives two quadsets with this pattern, there is a
total of eight. The only other potentially successful patterns would be based on the patterns
with two self-complementary quads and a pair of mutually-complementary quads as shown,

namely i) ® X ° ° (ii® °* * X
X @ e . e X @ o
e o X O e @ X o
e o @ X X o o @
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where actual success is possible if, fortuitously as it were, there is coincidence between a part
sum of the two mutually-complementary quads and one of the self-complementary quads. This
never occurs in the 13- or 15-arrays, but three of the potentially successful patterns of (ii), (iii)
above succeed in the 9-array and three succeed in the 16-array, leading thus to another six
Frénicle quadsets of genus y. There is no possibility of four compatible quads giving two different
triplets. We thus have fourteen essentially different Frénicle quadsets of genus x in all. With a
multiplicity of 16 as shown earlier, this results in 224 magic squares with Frénicle quadsets of
genus X.

Genus A

Frénicle quadsets of genus A would have to have one and only one self-complementary quad
(which must lie on the main diagonal of an array) and three quads with no complementarity.
There are just eight essentially different available sets of positions for the quads within an array
and having a common part sum (different from 17) which satisfies these conditions, namely
those indicated by the four symbols @, X, A, M in the diagrams

® X H A e B X A
A B X © X A @ ®

® A B A m e
B A O X m @& A X

In all eight of these quadsets one and only one pair of quads lie on the same lattice line and no
two quads are symmetrical about the centres of the arrays. Thus, in all four arrays, all quadsets
having 'the positions shown have more than two unrepeated part sums which is precluded for
Frénicle quadsets. This establishes that there can be no solutions with Frénicle quadsets of
genus A.

Genus Q

Frénicle quadsets of genus  consist of four quads with no complementarity and there can
be no triplet (§3(d)). The only possible positions for four compatible quads within an array
(thus having a common part sum) and satisfying these conditions are

e @® X . . ] X @

‘ X e e @ . . ® X
and

@ o e X ® X . ]

e X @ o X @ e .

where the symbols @, X represent different quadsets respectively. The first quadsets illustrated
fail in the 9-array (triplet 15), and in the 13- and the 15-arrays with four unrepeated part sums,
but succeed in the 16-array because of the ‘fortuitous’ repetitions of parallel lattice lines with
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shared part sums 11, 13 respectively, (giving the two essentially different complementary
Frénicle quadsets Q,, Q,).Similarly the second two quadsets illustrated fail in the 13-, 15-, and
16-arrays, but succeed in the 9-arrays because of the repetitions of the part sums 14, 16
respectively in adjacent rows of the last column in this 9-array, (giving the two essentially
different complementary Frénicle quadsets €, Q,). There are no other possibilities. We have
thus arrived at the four essentially different Frénicle quadsets of genus £, and the explanation of
the remarkable phenomenon (now that it has been proved that all Frénicle quadsets of this
genus have quads with a common part sum) of the existence of only sixteen ‘irregular’ solutions,
the multiplicity having been shown in (§3(d)) to be four.

(¢) The populations for genera ©, ©®

Frénicle quadsets of these two genera have the common part sum 17, which, being its own
complement, makes the methods used to enumerate the Frénicle quadsets for the other genera
here less convenient. We have shown in (§3(4)) that any specific Frénicle quadset of either
genus leads to a set of magic squares of pattern (3) which can be written as

a b b a
e f foe
) k Ko7

in the usual notation with &’ = 17 —g, etc., and where a +f = k +n to ensure that the elements
in the principal diagonals add to 34. The columns form two pairs of mutally-complementary
quads and thus, as was shown in (§2(k)) must be from among the six Il-quadsets already
defined and must therefore have two common part sums. More particularly, any specific
Frénicle quadset of genus O, but not of genus @, leads to a set of semi-pandiagonal magic
squares of this pattern (§3(¢)) for which the condition 4 +¢ = 40 must obtain and elements
in the Frénicle corner squares and in the Frénicle extended corner squares add to 34 (§2(2)).
Hence, thena+e¢ = 34 —b—f = k+oand a+i¢ = 34—b'—k" = b+k provide the two common
part sums corresponding to each II-quadset and a magic square with Frénicle quadset of
genus O always exists. When the Frénicle quadset is of genus @ and the square is not semi-
pandiagonal, the equalities above do not hold and thus cannot form the two common part
sums. Thus either a+7 or b +0 (or their complements) have to be involved, and one at least
of the common part sums for a ® must be different from those for a ® derived from the same
II-quadset, if and when one or more II-quadsets can be thus derived.

Call the columns of the square above 4, B, B’, A’ and write the conditions for any (3) thus
depicted as n—a = f—#, and the additional condition for a semi-pandiagonal (3) 0—b = ¢—1.
To enumerate the Frénicle quadsets of the two genera we look at each II-quadset in turn and
examine whether any of the differences between the elements of one quad (which can be taken
as the column 4) equal any of those of one of the two quads not complementary to 4 (which
can be taken as column B). Any such equality specifies a ® or a @. Since a @ necessarily exists,
the conditions for this, namelyn—a = f—k,e—i = 0—b, ensure that there is a pair of differences
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within the column 4 which are the same as a pair of differences within the column B. They use
all elements in the two columns 4, B and can be called the ‘necessary’ differences. Moreover
the magic square

a b ¥ a
S e & f
Ko7 ) k

B
)
5
S

is then also magic, essentially different from that above and with the same Frénicle II-quadset,
the columns being interchanged with the quadsets formed by the principal and short broken
diagonals; the rows, the Frénicle corner squares and the Frénicle extended corner squares
respectively being re-arranged internally. This will occur for any two II-quadsets for which
each quad of one quadset has one and only one element in common with each quad for the
other quadset, namely if and only if the two II-quadsets form one of the three ‘associate pairs’
already defined in Part Two, thus establishing that there are just three different Frénicle
quadsets of genus ® corresponding to these three associate pairs of II-quadsets.

We can now proceed to examine each II-quadset in turn, choosing arbitrarily for the
columns 4, B the quad which contains the element 1 and the quad which is not its complement
with the smallest ‘free’ element, the transformations U, S looking after any other choices.
Each quad then leads to six ‘differences’, one pair of differences in one group which is the
same as a pair of differences in the other, which use the eight elements in the two quads once
and once only and yield a @. These ‘necessary matching differences’ are shown starred in
the working which follows. Any other matching differences, if and when they exist, are fortuitous
and then yield ®@s. They are marked with a dash. These can be of two kinds: those which
involve one (but never both) of the differences used in creating the ©s, and those which do not. In
the latter event the matching differences are entirely separate from those leading to a ®, but they
do not use all elements of the two quads and must therefore use one element in each quad twice.

IT,: 181114, 27 13 12 give differences 7 10* 13 3 6* 3, 5 11 10* 6* 5 1 respectively. The
necessary differences 10%, 6* yield ®, and there are no other matching differences to provide
a ®-quadset.

IT,: 1612 15, 3 8 10 13 give differences 5*' 11 14 6 9 3%, 5% 7 10 2 5’ 3* respectively. The
necessary differences 5*, 3* yield (as they must) the same ©-quadset ®, as above. The
fortuitous matching differences given by the dashed 5s yield ®@, as listed.

II3: 181015, 361213 give differences 7" 9* 14 2 7% 5, 3 9% 10 6 7% 1. The necessary
differences 9%, 7* yield ®,, and the fortuitous matching differences given by the dashed 7s
yield @, as listed.

IT,: 171214, 2811 13 give differences 6* 11’ 13 5" 7 2%, 6* 9 11’ 3 5’ 2*, The necessary
differences 6%, 2* yield ®, again as they must, and the two sets of fortuitous matching differences
given by the dashed 11s and 5s yield respectively the two different ®s listed as @, and @5
respectively.

Il;: 181213, 2711 14 give differences 7' 11 12* 4* 5’ 1, 5’ 9 12* 4* 7" 3, The necessary
differences 12*, 4* yield ®3, and the two sets of fortuitous matching differences given by the
dashed 7s and 5s yield the two different ®s listed as @4 and @, respectively.
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ITg: 141415, 5810 11 give differences 3* 13 14 10 11 1*, 3% 56 2 3’ 1. The necessary
differences 3*, 1* yield the same ®; as above (as they must) and the fortuitous matching
differences given by the dashed 3s yield @ as listed.

(d) Summary of enumerations

This completes the process. It confirms the existence of the three (only) Frénicle quadsets
of genus @, and establishes that there are seven Frénicle quadsets of genus @, namely those
listed: none from II;, one from each of II,, II;, I, and two from each of IT,, IT;.

This completes the enumeration and identification of all Frénicle quadsets. The complete
list gives I1: 6; ©®:3; ®:7; X:14; A:0; Q:4, making 34 in all. This total of 34, which is also the
sum of the numbers in all rows, columns, principal diagonals and Frénicle quadsets of solutions,
appears to be coincidence, that is, among the many curious facts associated with these magic
squares.

The total number of regular solutions is thus 48 x 6 +80x 3+ 16 x 7+ 16 x 14 = 864, which
together with 4 x 4 = 16 irregular solutions of genus Q give the total 880 for all essentially different
solutions. :

The proof of Frénicle’s result by the part-sum method is now complete. It has required no
consideration of actual solutions, but only their structure, and is therefore strictly an analytical
proof. The main interest in these solutions undoubtedly lies, not so much in the truly magical
properties of the 48 pandiagonal squares, for one would expect symmetries, but in the extra-
oridinary fact of there being any irregular solution, and then merely 16 such irregulars. The
method of proof given here reveals why this is so. Had there been no irregular solutions, with a
total of (regular) solutions then 864 = 23 x 32 it might not havé\been a matter of much surprise.
But that, from all the 16!/32 = (6.538 ...) ! possible permutations of the first sixteen numbers to
form essentially different squares of which 880 x 8 = 7040 are magic, exactly 16 x 8 = 128 and
no more are ‘irregular’ is certainly surprising. One could reasonably conjecture that there could
be huge numbers of irregular solutions (the number of 5 x 5 magic squares is enormous and has
only recently been computed), and indeed, had solutions with Frénicle quadsets of genus A
and/or of genus Q with no unrepeated part sums been possible, the total number of solutions
would have been as much as doubled. It appears to be mere chance, arising from the intriguing
and often perverse behaviour of the positive integers, which gives such a happy and manageable
number of solutions. This should not lessen our admiration for Bernard de Frénicle’s achieve-
ment in taking this chance and successfully working out ‘by hand’ the correct answer so long
ago.

5. THE ALTERNATIVE ‘MATRIX METHOD’

Considér now the magic squares constructed from the numbers 0-15 and expressed in
scale 4, so that each position in the squares contains two digits from among the sixteen different
ordered pairings

00 01 02 03

10 11 12 13
20 21 22 23

30 31 32 33
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of the ‘normal array’. As has been said earlier, a first condition for a solution is that each of
these pairings occurs once and only once, with each digit 0 1 2 3 occurring four times in the
first or ‘radix’ position and four times in the second or ‘unit’ position. The square can thus be
thought of as the combination (or superposition) of two 4 x4 single-digit matrices each of
which is made up of four each of the digits 0 1 2 3 in some arrangement. Call these respectively
the radix matrix and the unit matrix.

In the 0-15 magic square, by definition, the numbers in the rows, in the columns and in the
two principal diagonals must add to 30, as also, by Frénicle’s rules, must the other ‘defined
quads’, namely the short broken diagonals in semi-pandiagonal and pandiagonal squares and
the long broken diagonals in pandiagonal squares. We have shown that all these ‘defined
quads’ must be from the first or second groups of the quad list, and we notice that, in the quad
list written in the 00-33 notation,
all quads in the first and second groups have digits in both the radix and the unit positions which are either
01230r0033o0r1122in some arrangement, a property which does not hold for any quad of the third
grotip.

The only combinations of these three sets of four digits which can give ‘digit quadsets’ with
each digit 0, 1, 2, 3, occurring exactly four times are

G o 1 2 3 01 2 3 01 2 3 01 2 3
G o 1 2 3 01 2 3 00 3 3 112 2
(i) 0 0 3 3 11 2 2 00 3 3 11 2 2

The principles on which the proof by the matrix method is based are as follows. To obtain
the sum 30 for the magic square in its rows, columns, and principal diagonals, the sum of
the digits of the radix matrix multiplied by 4 and added to the sum of the digits of the unit
matrix must yield 30. The only possible combinations are:

30 = 7x44+2 =6x4+6 = 5x4+10.

It follows that the radix matrix of a successful combination must be such that the digits in any
‘defined quad’ of a digit quadset add to 7, 6 or 5; and that these defined quads must then be
‘matched’ in the unit matrix by quads the digits of which add respectively to 2, 6 or 10.
A matrix therefore cannot be ‘mixed’, that is, it cannot contain a quad with digits adding to
7 or 5 and a quad with digits adding to 2 or 10. Moreover if a digit quadset contains a quad with
digits adding to 7 then it must contain a pairing quad with digits adding to 5 and vice-versa;
and if a digit quadset contains a quad with digits adding to 2 it must contain a pairing quad
with digits adding to 10 and vice-versa. We call a unit (or radix) matrix viable if it is such that a
‘matching’ radix (or unit) matrix can be found with which it can potentially combine success-
fully in some orientation to form a solution, that is with which it can combine without causing
duplication of numbers in the resulting square. If it can be shown that no such matching
matrix can be found without necessarily causing duplications of numbers when superposed,
it is unviable and can be ruled out from further consideration. The first stage of proof by the
matrix method thus lies in establishing that all rows, all columns and all Frénicle quads in both
the radix and the digit matrices (where Frénicle quads in these matrices are defined as in
solutions) of potentially viable matrices must have digits 01 23,003 3, or 1 1 2 2, a charac-
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teristic which we have now proved to be true by the part-sum method since it is proved in
§2(g) that Frénicle quads must come from Groups 1 or 2 of the quad list. There are 35
different ways of choosing four digits (unordered) from four digits 0 1 2 3 using each not more
than four times. Among these 35 are just 17 which have digits which add to 2, 5, 6, 7 or 10.
They are shown in the table below.

v TOTALS OF FOUR DIGITS
2 5 6 7 10

(==
(==
(==
= o O O
—_ o e D
= N = DN
D M W W
O = O O O
DO = i e O
N = N N W
D W oW W
| CECURECURUL
O N N W
DO = DO
_om o O
w W
[SCENOU)
S )
- D

Here the sets of four digits 01 23,003 3, 1 12 2 used in various ways form the radix and the
unit digit respectively of all quads of the first and second groups in the 00-33 quad list (see
Appendix I), whereas all sets of four digits shown above other than 0 0 3 3, 1 1 2 2 are required
to describe completely the radix and unit digits of the quads in the third group of the quad list.

There are eleven different ways of combining the digit quads with sums 2, 6 or 10 into
quadsets which contain each digit four times and which could thus form quadsets in a unit
matrix, three of these being the quadsets (i), (ii), (iii) already mentioned. Six of the remaining
eight can be readily dismissed as leading to unviable unit matrices which could not be ‘matched’
by any radix matrix without causing duplications. The principal difficulty lies in eliminating
the possibility of the quadsets

02 2 2 11 1 3 0 0 0 2 1 3 3 3
and 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

which, when we call the digits 0, 3 and 1, 2 complementary, are self-complementary digit
quadsets.

With this achieved (and now proved by the part-sum method), it becomes a simple matter
to write down all possible potentially viable matrices and thus, on following certain guidelines,
to construct all possible magic squares. The matrices are listed in the appendices, ordered and
labelled in the manner in which they were arrived at originally by this method and from which
the symmetrical solution list was constructed before any theoretical work on, or thought of, providing
proof. That the matrices should obey the rules described above was merely an obvious guess and
a way of constructing them; that they combined successfully to form a list of exactly 880
solutions was sufficient reassurance that the matrix list was surely correct and exhaustive, and
gave rise to an irresistible encouragement to attempt rigorous proof.

In order to keep to a standard orientation of matrices we write them so that when the digits
003 3,112 21aay occur in either rows or columns, then they are arranged to do so in the rows.
The permissible digit quadsets (i), (ii), (ili) make plain that the columns then have to be of the
form (i), for no column composed of the digits 0 0 3 3 and 1 1 2 2 can intersect fwo rows which
have the digits 00 3 3 and 1 1 2 2 respectively. In the standard form we can then state that all
columns in any viable matrix are composed of the digits 0 1 2 3.
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With the matrices written in the standard form we can attach to them the appropriate
pattern labels (1) to (12), analogous to the patterns for solutions whenever they occur, formed
by linking the complementary digits 0, 3 and 1, 2, the patterns here being read either ‘verti-
cally’ or ‘horizontally’. Patterns for matrices will not necessarily be unique in the way that
they must be unique for solutions. However, it is plain that a solution with a particular pattern,
when broken down to reveal its two contributing matrices, will have imparted its patterns to

_the matrices in some orientation. In other words, a necessary (but not sufficient) condition for
two matrices to be able to combine successfully to form a solution is that in some orientation
they have one and at most one pattern in common, since, if more than one pattern were to coincide
between the unit and radix matrices, there would necessarily be duplication of numbers and
so no solution.

It is plain that viable matrices must remain viable (in some orientation) under rotation,
reflexion, and the transforms U, S. Viable matrices will always be Latin squares because the
conditions imposed, as shown, on their rows and columns ensure that the sums of their com-
ponents are always equal (to 6) and this is sufficient condition for a Latin square. The digits in
their principal diagonals (which also form two Frénicle digit quads and must therefore together
add to 12) may however be the two sets 0222, 311 1; or they may add respectively to 7
and 5, or to 2 and 10. Whenever a solution is formed by the combination of two matrices which
have diagonals with digits which add to six (including here therefore those with digits 0 2 2 2,
311 1), since the digits in the rows and columns and Frénicle quads of both matrices also
always add to six, then reversing the digits in the radix and unit positions of each number in a
solution will also give a solution, although not necessarily a solution not already looked after
by the transformations U, S, US. This condition thus defines solutions which are ‘reversible’.
When the digits in the radix and unit poisitions in the principal diagonals add to 7 and 5 or to 2
and 10 respectively thus giving (when correctly positioned) correct diagonals in the solution,
the reversal still gives a Latin square, but not a magic square, for its diagonals will now have
the sums 10 x4 +5 = 45 and 2 x 4 + 7 = 15 respectively instead of both summing to 30.

There are 114 essentially different viable matrices in all and they have been grouped into
three categories defined by the nature of their diagonals. Category One contains all matrices
with diagonals formed by sets of digits 01 23,003 3, or 112 2; Category Two has matrices
with diagonals 0 2 2 2, 3 1 1 1; Category Three has matrices whose diagonals have digits which
add to 7 and 5, or to 2 and 10 as explained. The ‘7, 5> matrices can combine only with the
‘2, 10’ matrices and then only in positions which give ‘matching’ diagonals and with the
7, 5’ matrix in the radix or left-hand position and the ‘2, 10’ matrix in the unit or right-hand
position. The matrices with diagonals 0222, 311 1 cannot combine with themselves since
this would lead to duplication of numbers in the diagonals of the resulting squares. They can
thus combine only with matrices of the first category which have diagonals composed of the
digits 0 1 2 3.

The matrices are given in full in the List of Matrices (Appendix VI) where they are also given
their appropriate pattern numbers. The way they are grouped (and named, with roman capitals)
is a result of the logical manner in which they were written in the first instance. The matrices
A, B, C (and their transformations A’, B’, C’ by U) are the only matrices for which ‘like
digits’ occur once and only once in each row, column and principal diagonal. Their
144 combinations which give essentially different successful magic squares (the other 144
combinations each leading to eight repeated numbers) necessarily lead to the only solutions
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to the magic card problem as will be explained in §6. Not only do ‘like digits’ form the

pattern shown by the symbols @ in some rotation of reflection
® ] ] ]

when mapped on the normal array now, in digit form

o 1 2 3

o 1 2 3

or its rotations or transformations, but so also do sets of digits 0 1 2 3 within each matrix, as
indeed they must for a successful combination.

The grouping (and naming) of other matrices is such that if any two ‘lead’ matrices combine
successfully, then so also must all other pairs of matrices in ‘matching’ positions and orientations
within the group. It is this property of the arrangement of the matrices which leads directly to
the symmetries and order of the solution list.

Other guides to the successful combination of matrices are: within Category One, the
matrices P, P’, Q ,Q’, R, R, T, T’ (which lead to the solutions with pattern (3) whose Frénicle
quadsets are of genus ® but are yet not semi-pandiagonal) can combine only between them-
selves and in restricted ways, this being caused by the positions of like digits within them and
the positions of ‘matching’ sets of digits 0 1 2 3; the matrices J, M, M’, K, N, N’ cannot
combine between themselves because of their high degree of symmetry and the nature of
diagonals which are composed of the digits 0 0 3 3, 1 1 2 2 respectively. Matrices J and K can
however combine successfully in several orientations with E, E’; and J, M, M’, K, N, N’
combine successfully in various ways with the group of matrices H, H', I, I'.

The most powerful guide to both elimination of potentially successful combinations of
matrices and to their likely success is the pattern numberings. Once the obvious exclusions
mentioned above have been made we can look for like pattern numbers. If two matrices are
superposed in any orientations which result in there being fwo common patterns read either
horizontally or vertically, then as has been explained they cannot combine without causing
duplications, for a square adopts common patterns of contributing matrices and a solution must
always have a unique pattern. In contrast, whenever two matrices whose successful combination
has not otherwise been excluded can be brought together so that they have one and only one
common pattern then the result will almost always be a solution — and then a solution with this
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as its pattern. By following these and certain other simple rules, all possibilities for successful
combinations of matrices can readily be established. However, the theoretical enumeration by
this method of how many successful combinations there are is tedious and, as the Frénicle
quad and part sum method has proved so powerful and effective in this respect, this has not
here been further pursued.

The matrix method does however provide an extremely practical and speedy way of pro-
ducing the list of solutions, having the added advantage of giving a highly symmetrical list of
solutions which proved to be of great use in all the theoretical work which followed.

6. THE MAGIC CARD AND THE BOSS PROBLEMS
The magic card problem

That the 16 court cards of a pack can be placed in a 4 x 4 array so that no row, no column
and neither of the two principal diagonals contains more than one card of each suit nor more
than one of each rank in 144 essentially different ways can perhaps most easily now be shown by
considering matrices. Designate cards of rank Ace, King, Queen, Jack by r(x), v = 0, 1, 2, 3
respectively, and cards belonging to suits Spades, Hearts, Diamonds, Clubs by s(v),v = 0, 1, 2, 3
respectively, so that each of the 16 court cards is uniquely defined by the different combinations
of 7(u) +s(v). Then solutions to the magic card problem must be superpositions of two 4 x 4
matrices, both being such that one and only one digit from each of the four digits 0, 1, 2, 3
appears in each row, each column and in each of the two principal diagonals, the digits in each
of these lines thus adding to six. If the matrix representing the ranks is thought of as being in the
first or radix position and that representing the suits as being in the second or unit position (or
vice versa) the sums of the numbers in each line in scale four 00-33 notation will thus be
6 x4+6 = 30, and the solution must form a magic square. The only matrices satisfying these
conditions are those labelled A, A’, B, B’, C, C’, in the matrix list. There are 144 essentially
different superpositions of these six matrices in orientations which give all 16 numbers with
therefore no duplications. They are to be found in the list of magic square solutions numbered
as shown in the table below:

pattern solution numbers
(4) (5) 1-8 49-56 97-104 145-152 32
1) (2) 17-24 65-72 113-120 161-168 32
1) (2) 33-40 81-88 129-136 176-184 32
(6) 289-292 329-332 309-372 409-412 16
(3) 297-300 337-340 377-388 417-420 16
(3) 313-316 353-356 393-396 433-436 16
total 144

The boss problem

This problem is to determine how many 4 x 4 squares can be successfully arrived at with the
normal boss described in § 1, the space being taken as the missing number 16. The nature of the
quads in the first and second groups of the quad list shows that every solution of the set of 880
can be obtained by an even number of interchanges from numbers arranged in the normal
boss array — a simple check being that all four members of any of these quads can be brought
into any particular row by an even number of orthogonal moves. Ball demonstrates that turning
a square through 90° involves an odd number of interchanges, and so an arrangement which
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cannot be achieved in its initial orientation can be achieved when rotated through a right angle
and vice versa. It follows that each essentially different 4 x 4 magic square gives rise, by
rotation and reflection, to four which can be achieved and four which cannot be achieved with
a boss of either the normal or the alternative form which is its ‘reversal’. But, as is clear from
what has been said above, all 880 solutions written with TOP as in the pattern diagrams, that is, in
our defined ‘standard form’, can be obtained from the normal boss array by an even number of
interchanges. We need, therefore, only to count in how many solutions the number 16 (33)
occurs an even number of orthogonal moves from the bottom right-hand corner (the space in
the normal boss) ; that is, in how many of the 880 solutions, as written in the 00-33 solution list,
the number 33 lies in one or other of the positions shown as @ in the diagram below:

Actual counting is not necessary. If in a ‘lead’ solution, 33 lies on a principal diagonal, then
the transforms U, S leave its parity unchanged. If it does not lie on a principal diagonal but
occupies a ‘side’ position, whereas the transform S still leaves its parity unchanged, the U
transform changes the parity. We have therefore only to take note of the parities of the number
33 in each lead solution and multiply by suitable factors according to whether it lies in a
principal diagonal or occupies a ‘side’ position within the square.

We can quickly check that there are 104 lead solutions with 33 on a principal diagonal, 60 of
which are in the top-left to bottom-right diagonal and 44 in the top-right to bottom-left
diagonal. The other 116 lead solutions have the number 33 in side positions. The total
number of solutions ‘in standard orientation’ for which the boss problem can be solved is
thus {60+ 4(116)} x 4 = 472, the number for which it fails being {44 +}(116)} x 4 = 408. The
difference is accounted for by the way in which the solutions with pattern (3) behave under the
transformations U, S.

7. SUMMARY OF SIGNIFICANT OR CURIOUS FACTS (NOT ALL OF WHICH
HAVE OGCCURRED IN THE EARLIER PARTS OF THE PAPER)

(1) There are 880 essentially different solutions (Frénicle, pre-1675) which can be directly
derived from 220 essentially different solutions by transformations U, S (Lehmer 1933).

(2) In every solution the rows, the columns and the Frénicle quads (§3(d)) contain
respectively two elements which have the same sum (a ‘common part sum’); in some solutions
these quads may have two (overlapping) pairs of two numbers with the same sum.

(3) All rows, columns and Frénicle quads (which must have elements adding to 34) contain
two odd and two even numbers. The two principal diagonals (which also must have elements
adding to 34 by definition) can, in contrast, contain all-odd and all-even numbers respectively.
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(4) The links between complementary numbers within any solution form one of twelve
patterns (Andrews 1908, Dudeney 1910, both by observation only). Ten of these patterns are
symmetrical about both the vertical and horizontal axes of the square, giving 864 regular
solutions; the other two patterns are symmetrical about one axis only and giving the 16
irregular solutions.

(5) There are 86 sets of four numbers which can be chosen from the numbers 1 to 16 which
add to 34 and are defined here as quads. Of these, 28 are self complementary and can be com-
bined in 105 essentially different ways to give four compatible quads (quadsets) which together
contain each number 1-16 once and only once. Another 24 quads form 12 mutually-comple-
mentary pairs which can be combined to form six quadsets (only), these being the combination
of two mutually-complementary pairs of quads and such that each quad appears once and
only once in the six quadsets taken together. The remaining 34 quads form a further group of
17 mutually-complementary pairs, no two pairs forming a compatible quadset with any other mutually-
complementary pair.

(6) The self-complementary quads necessarily contain two odd and two even numbers. The
second group of 24 quads also are such that each contains two odd and two even numbers. If
the numbers 1-16 are ‘converted’ into the numbers 0-15 by subtracting 1 and then expressing
them in the 00-33 scale 4 notation, these 52 quads all have the characteristic that the digits in
the radix positions and the digits in the unit positions respectively of the four numbers in each
quad are either 0123,003 3 or 1 12 2 in some arrangement. This property does not hold for
any of the 34 quads in the third group.

(7) The 28 self-complementary quads are all ‘used’ either as rows (or columns) or as
Frénicle quads. Of the 105 quadsets into which they can be combined, three are used as either
rows (or columns) or as Frénicle quadsets (necessarily in different solutions), seven are used as
Frénicle quadsets but never as rows (or columns) and 24 are used as rows (or columns) but
never as Frénicle quadsets. Thus of the 105 ‘all self-complementary quadsets’ 34 in all are
‘used’.

(8) The six quadsets formed by the 12 mutually-complementary pairs of quads are all used
as rows, as columns and/or as Frénicle quadsets. In 96 solutions (48 defined as pandiagonal and
48 defined as ‘diagonal’) they are used in combination simultaneously as either rows, and/or
columns and/or Frénicle quadsets. In pandiagonal and semi-pandiagonal solutions the rows,
the columns, the Frénicle quadsets and the quadsets formed by principal and short-broken
diagonals are all from among the nine quadsets II, g ®,_; in some combination.

(9) There are 34 essentially different Frénicle quadsets, two pairs (only) of which are
complements. This frequent recurrence of the number 34 appears to be mere coincidence.

(10) The common part sum or sums of any set of four quads forming a quadset must be
9, 13, 15, 16 or their complements, or 17. Those pairs of numbers adding to 9, 13, 15, 16
form a common part sum must be specific constructive part sums (§2(g)) namely 1+ 8, 2+ 7, 3+6,
4+5; 1+12, 2+11, 3+10, 4+9; 1+14, 2413, 3+12, 4+11; 1+15, 2+ 14, 3+13, 4+ 12.
Other pairs of numbers adding respectively to 13, 15, 16, although of significance in determining
possible solutions, are non-constructive. There are no non-constructive pairs of numbers adding to 9.

(11) Since all rows, columns and Frénicle quads have two even and two odd numbers, the
three part sums of any such ‘defined quads’ must be two odd and one even (§2(f)).

(12) In no solution can the rows, the columns or the Frénicle quadsets be composed of one
self-complementary quad and three quads with no complementarity. Other classifications of
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quadsets (§2(d)) all occur as rows, columns, and /or Frénicle quadsets somewhere among the
880 solutions.

(13) The “triad’ (a, B, y) of part sums results from the quad with elements {(a+g—7v),
Ha—p+7y), H(—a+p+7), 34—%(ax+p+7) or from its complement. The element 16 (and its
complement 1) can only result from the last expression and then only if a+f8+7y = 36.

A set of four triads is only admissible if two triads add to 36 (the corresponding quads
containing either 1 or 16) and if one of the following alternatives apply (not proved here):

(i) if neither of the ‘sum-36’ triads contains the part sum 16, then each of the other two
triads’ sums must be 38; (ii) if just one of the ‘sum-36’ triads contains the part sum 16, one of
the triads with sum greater than 36 must have the sum 38 and the other a sum not less than 40;
(iii) if both the ‘sum-36’ triads contain the part sum 16, then each of the other two must have
a sum not less than 40, this arising from consideration of elements 2 and 15.

(14) All magic squares can be obtained from one another by an even number of interchanges
(§6). There are 144 essentially different solutions to the magic card problem. In the ‘normal’
boss game 472 magic squares written in the ‘standard form’ can be achieved, the other 408
magic squares being unachievable when written in the standard form.

We are grateful to Col. Robert Ollerenshaw F.R.C.S. for the art work; to IBM (United
Kingdom) Ltd for assistance in the production of the list of solutions; to the City of Manchester
Library Service for help in tracing and obtaining copies of early publications about magic
squares, including the original 1908 edition of Andrews’s book of 1908 and 7%e Queen of 15 January
1910, and to the British Library.
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AprPENDIX 1
(i) L1sT OF ALL QUADS IN 00-33 SCALE 4 NOTATION

Group 1. Self-complementary quads

00 01 32 33 01 02 31 32 02 03 30 31 03 10 23 30
00 02 31 33 01 03 30 32 02 10 23 31 03 11 22 30
00 03 30 33 01 10 23 32 02 11 22 31 03 12 21 30
00 10 23 33 01 11 22 32 02 12 21 31 03 13 20 30
00 11 22 33 01 12 21 32 02 13 20 31 10 13 20 23
00 12 21 33 01 13 20 32 11 13 20 22 10 12 21 23
00 13 20 33 12 13 20 21 11 12 21 22 10 11 22 23

Group 2. Mutually-complementary pairs which combine to form quadsets

00 03 31 32 01 02 30 33 10 13 21" 22 11 12 20 23
00 11 23 32 01 10 22 33 02 13 21 30 03 12 20 31
00 13 21 32 01 12 20 33 02 11 23 30 03 10 22 31
00 12 23 31 02 10 21 33 01 13 22 30 03 11 20 32
00 13 22 31 02 11 20 33 01 12 13 30 03 10 21 32
00 13 23 30 03 10 20 33 01 12 22 31 02 11 21 32

Group 3. Mutually-complement\ary pairs which do not combine

00 10 30 32 01 03 23 33
00 12 22 32 01 11 21 33
00 11 30 31 02 03 22 33
00 20 21 31 02 12 13 33
00 20 22 30 03 11 13 33
00 21 22 23 10 11 12 33
01 10 30 31 02 03 23 32
01 11 23 31 02 10 22 32
01 13 21 31 02 12 20 32
01 20 21 30 03 12 13 32
01 20 22 23 10 11 13 32
02 12 22 30 03 11 21 31
02 13 22 23 10 11 20 31
02 20 21 23 10 12 13 31
03 12 22 23 10 11 21 30
03 13 21 23 10 12 20 30
03 20 21 22 11 12 13 30
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(ii) LIsT OF ALL QUADS IN 1-16 NOTATION

Group 1. Self-complementary quads

1 2 15 16 2 3 14 15 3 4 13 14 4 5 12 13
1 3 14 16 2 4 13 15 3 5 12 14 4 6 11 13
1 4 13 16 2 5 12 15 3 6 11 14 4 7 10 13
1 5 12 16 2 6 11 15 3 7 10 14 4 8 9 13
o 1 6 11 16 2 7 10 15 3 8 9 14 5 8 9 12
. ~ 1 7 10 16 2 8 9 15 6 8 9 11 5 7 10 12
;5 E 1 8 9 16 7 8 9 10 6 7 10 11 5 6 11 12
2 E Group 2. Mutually-complementary pairs which combine to form quadsets
= O 1 4 14 15 2 3 13 16 5 8 10 11 6 7 9 12
o o 1 6 12 15 2 5 11 16 3 8 10 13 4 7 9 14
v 1 8 10 15 2 7 9 16 3 6 12 13 4 5 11 14
1 7 12 14 3 5 10 16 2 8 11 13 4 6 9 15
1 8 11 14 3 6 9 16 2 7 12 13 4 5 9 15
1 8 12 13 4 5 9 16 2 7 11 14 3 6 10 15

Group 3. Mutually-complementary pairs which do not combine

PHILOSOPHICAL
TRANSACTIONS
OF

1 5 13 15 2 4 12 16
1 7 11 15 2 6 10 16
1 6 13 14 3 4 11 16
1 9 10 14 3 7 8 16
1 9 11 13 4 6 8 16
1 10 11 12 5 6 7 16
2 5 13 14 3 4 12 15
2 6 12 14 3 5 11 15
2 8 10 14 3 7 9 15

e 2 9 10 13 4 7 8 15

etd

::]u 2 9 11 12 5 6 8 15

>~E 3 7 11 13 4 6 10 14

gm 3 8 11 12 5 6 9 14

ma 3 9 10 12 5 7 8 14

= O

=w 4 7 11 12 5 6 10 13
4 8 10 12 5 7 9 13
4 9 10 11 6 7 8 13

PHILOSOPHICAL
TRANSACTIONS
OF

36-2
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AprPENDIX II. THE TWELVE SOLUTION PATTERNS

(1) () U (3)

E—— — —
::J — _ —_— —_—
—
O = —_— e —_ —_—
=
als (4 (5) U (6)
=2 X X
= w
= )
<
08
£ XX
o5
R0
oz
T (7) 9) U (8) S (10) US
—_— _ —_— T —_— T
T — T - -
T — - . ————
—_— e T —_— T — T

(11) (12) U

>
>R
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APrpENDIX III. THE QUAD ARRAYS
Common part sum 9 :
1 8 9 16 1 8 10 15 1 8 11 14 1 8 12 13,

(9 10 17) (9 11 16) (9 12 15) (918 14) °
2 7 9 16 2 7 10 15 2 7 11 14 2 7 12 13,
(9 11 16) (9 12 17) (9 13 16) (914 15) °
3 6 9 16 3 6 10 15 3 6 11 14 3 6 12 13
(9 12 15) (9 13 16) (9 14 17) (915 16).°
4 5 9 16 4 5 10 15 4 5 11 14 4 5 12 13
(9 13 14) (9 14 15) (9 15 16) (9 16 17) °

: Common part sum 13 ‘
1 5 12 16 1 6 12 15 1 7 12 14 1 8 12 13

(6 13 17) (7 13 16) (8 13 15) 9 13 14) °
2 5 11 16 2 6 11 15 2 7 11 14 2 8 11 13
(71 13 16) (8 13 117) (9 13 16) (10 13 15) °
3 5 10 16 3 6 10 15 3 7 10 14 3 8 10 13,
(8 13 15) (9 13 16) (10 13 17) (11 13 16) °
4 5 9 16 4 6 9 15 4 79 14 4 8 9 13

(9 13 14) (10 13 15) (11 13 16) (12 13 17) -

Common part sum 15

13 14 16 1 7 12 14 18 11 14 1 4 14 15
(4 15 17) (8 13 15) 9 12 15) (56 15 16) °
3 5 10 16 5 7 10 12 5 8 10 11 4 65 10 15
(8 13 15) (12 15 17) (13 15 16) 9 14 15) °
3 6 9 16 6 7 9 12 6 8 9 11 4 6 9 15
(9 12 15) (13 15 16) (14 15 17) (10 13 15) °
2 3 13 16 2 7 12 13 2 8 11 13 2 4 13 15
(5 15 16) (9 14 15) (10 13 15) (6 15 17)

Common part sum 16

1 2 15 16 1 6 12 15 1 8 10 15 1 4 14 15
(3 16 17) (113 16) (9 11 16) (5 15 16) °
2 5 11 16 5 6 11 12 5 8 10 11 45 11 14
(1 13 16) (11 16 17) (13 15 16) (9 156 16) °
2 7 9 16 6 7 9 12 789 10 4 7 9 14
(9 11 16) (13 15 16) (16 16 17) (11 13 16) °
2 3 13 16 3 6 12 13 3 8 10 13 3 4 13 14

(5 15 16) (9 15 16) (11 13 16) (116 17) °
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- Common part sum 9
10 17 11 16 12 15 13 14
12m
13w

4 AT 1515 -

Common part sum 13

Common ‘part sum 15
4 17 : 8 13 12 9 16 5
12%13
16W17

Common part sum 16
3 17 7 13 11 9 15 b
11%3
155)$92%1113%7<

The part sums which are in italic type are ‘constructive part sums’. There are part sums 13, 15,
16 which are not constructive. All part sums 9 are necessarily constructive.

17
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APPENDIX IV, FRENICLE QUADSETS (WITH PART SUMS)

genus II

1. i 8 11 14
9 12 15)

2. 1 6 12 15
(7 13 16)

3. 1 8 10 15
(9 11 16)

4, 1 7 12 14
(8 13 15)

5. 1 8 12 13
(9 13 14)

6. 1 4 14 15
(6 156 16)

genus 0 .

1. 1 6 11 16
(7112 17)

2. 1 7 10 16
(8 11 17)

3. 1 4 13 16
(5 14 17)

~ genus @

1. 1 6 11 16
(7 12 17)

2. 1 8 9 16
(9 10 17)

3. 1 4 13 16
(5 14 17)

4, 1 5 12 16
(6 13 17)

5. 65 7 10 12
(12 15 17)

6. 1 8 9 16
(9 10 17)

7. 2 7 10 15
(9 12 17)

2 7 12 13
9 14 15)

3 8 10 13
(11 13 16)

3 6 12 13
(9 15 16)

2 8 11 13
(10 13 15)

2 7 11 14
(9 13 16)

5 8 10 11
(13 15 16)

2 5 12 15
(7 14 17)

2 8 9 15
(10 11 17)

2 3 14 15
(5 16 17)

4 8 9 13
(12 13 17)

4 6 11 13
(10 15 17)

6 8 9 11
(14 15 17)

2 4 13 15

615 17)
4 8 9 13

(12 13 17)

3 7 10 14
(10 13 17)

4 8 9 13
(12 13 17)

3 6 9 16
(9 12 15)

2 65 11 16
(1 13 16)

2 7 9 16
(9 11 16)

3 5 10 16
(8 13 15)

4 5 9 16
(9 13 14)

2 3 13 16
(5 15 16)

389 14

(11 12 17)

3 5 12 14
(8 15 17)

5 8 9 12
(13 14 17)

3 7 10 14
(10 13 17)

3 5 12 14

(8 15 17)

5 7 10 12
(12 15 17)

6 8 9 11
(14 15 17)

2 6 11 15
(8 13 17)
2 6 11 165
(8 13 17)

1 5 12 16
(6 13 17)

4 5 10 15
(9 14 15) °

47 9 14
(11 13 16) °

4 5 11 14
9 15 16) °

4.6 9 15
(10 13 15) °

3 6 10 15
913 16)°

6 7 9 12
(13 15 16) °

4 7 10 13
(11 14 17) °

4 6 11 13
(10 15 17) °

6 7 10 11
(13 16 17) °

2 5 12 15
(714 17)°

2 7 10 15,
912 17) °

2 3 14 15,
(516 17) °
3 7 10 14,
(10 13 17) °

1 3 14 16
(415 17) °

4 5 12 13
916 17) °

3 6 11 14
(9 14 17)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

genus X

10.

11,

12,

13.

14,

genus Q
1.
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18 10 15
(9 11 16)

3 6 12 13
(9 15 _ 16)

17 12 14
(8 13 15)

2 8 t1 13
(10 13 15)

i 8 11 14
(9 12 15)

2 7 12 13-

(9 14 15)

1 8 11 14
(9 12 15)

2 7 12 13
(9 14 15)

16 12 15
(113 16)

3 8 10 13
(11 13 16)

18 12 13
(9 13 14)

3 6 10 15

(913 16)

18 10 15
(9 11 16)

1 4 14 15
(5 15 16)

1 8 12 13
(9 13 14)

45 9 16
(9 13 14)

1 8 10 15
(9 11 16)

2 7 9 16
(9 11 16)

5 6 11 12
(11 16 17)

78 9 10
(156 16 17)

2 6 11 15
(8 13 17)

3 7 10 14
(10 13 17)

6 7 10 12
(12 15 17)

6 8 9 11
(14 15 17)

2 7 10 15
(9 12 17)

3 6 11 14
(9 14 17)

3 4 13 14
(116 17)

5 6 11 12
(11 16 17)

3 6 11 14
(9 14 17)

4 5 12 13
(9 16 17)
4 5 12 13
(9 16 17)

7 8 9 10
(16 16 17)

4 65 10 156
(9 14 15)

2 7 12 13
(9 14 15)

4 7 9 14

(11 13 16)

3 8 10 13
(11 13 16)

2 7 9 16
(9 11 16)

4 5 11 14
(9 15 16) -

3 5 10 16
(8 13 15)

4 6 9 15

(10 13 15)

3 6 9 16
(9 12 15)

4 5 10 15
(9 14 15)

3 6 9 16
(9 12 15)

4 5 10 15
(9 14 15)

2 5 11 16
(113 16)

47 9 14
(11 13 16)

4 5 9 16
(9 13 14)

2 7 11 14
(9 13 16)

2 7 9 16
(9 11 16)

2 3 13 16
(6 15 16)

3 6 9 16
9 12 15)

1 8 11 14
(9 12 15)

2 65§ 11 16
(1 13 16)

1 6 12 15
(1 13 16)

499

3 4 13 14

(116 17) °

1 2 156 16
316 17) °

4 8 9 13
(12 13 17) ’

1 5 12 16,
(613 17)°

2 4 13 15
615 17)°

1 3 14 16
(4156 17)°

4 5 12 13

916 17)°

1 89 16
(9 10 17) ’

78 9 10
(15 16 17) °

1 2 15 16,
(316 11)°

2 7 10 15
(9 10 17) °

18 9 16
(9 1017)°

3 6 11 14
(9 14 17)°

5 6 11 12
(11 16 17)

2 7 11 14
(913 1)’

3 6 10 15
(9 13 16) °

3 6 12 13
(9 15 16) °

4 5 11 14
(9 16 16) °


http://rsta.royalsocietypublishing.org/

V‘J \
7~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

500 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BONDI

AprPENDIX V. NOTES ON THE PRESENTATION OF THE
MATRICES AND SOLUTIONS

The matrices and the solutions are arranged in the same manner, this being governed in the
first instance by the nature of their diagonals. The 30 matrices in Category One have diagonals
with digits 0123, 003 3, 1122 respectively in some ordering and some combination. The
eight matrices in Category Two have diagonals with digits 0 2 2 2, 1 1 1 3 respectively. The
matrices of Category Three are of two kinds: 52 with diagonals having digits adding to 7, 5
respectively and 24 with diagonals having digits adding to 2, 10 respectively.

Category One matrices combine to give 528 essentially different Category One solutions with,
Frénicle quadsets of genus IT and genus ©. The eight matrices of Category Two combine with
eight ‘matching’ matrices of Category One to give 128 essentially different solutions of Category
Two in four blocks of 32 solutions with Frénicle quadsets of genus X. The 52 Category Three
(7, 5)-matrices combine with the 24 (2, 10)-matrices to give 224 Category Three solutions,
96 with Frénicle quadsets of genus X, 112 with Frénicle quadsets of genus ® and 16 with
Frénicle quadsets of genus Q.

The matrices and the solutions are also labelled by their pattern designations. For matrices,
the ‘orthogonal patterns’ (1), (2), (3), (7), (8), (9) (10) are always unique when a matrix is in
the ‘vertical orientation’, that is, when it is viewed as though the left-hand column of digits as
depicted were the top row of digits. This is because, as explained in §5, the matrices are
oriented so that the columns have the digits 0 1 23 and the patterns for columns are thus
uniquely determined by the positions of the ‘complementary digits’ 03, and 1 2. In the
‘standard orientation’ matrices can, and most do, have more than one orthogonal pattern. The
symmetrical non-orthogonal patterns (4), (5), (6) must necessarily apply equally in both the
horizontal and vertical orientations. These latter patterns occur only in Category One matrices
(and in Category One solutions).

The patterns (11), (12), which are symmetrical in one median only, occur only in Category
Three matrices. They are shown as (11)~1, (12)~1 when they occur ‘upside down’ or left-to-
right as illustrated below for patterns (11)

(1)

(1)

instead of in the orientation shown in the pattern diagrams of the text and appendix. Pairs of
‘knight’s-move links’ between complementary digits occur in some matrices, without necessarily
being accompanied by the precise orthogonal links between the other complementary digits to
give the full patterns (11), (12). These are labelled bv these nattern nimhere in enmara hracbate
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i.e. as [11], [12], [11]-%, [12]~! respectively as this then 1nd1catcs the possible combinations to
give patterns (11), (12) in solutions.

The pattern numbers in the solutions are necessarily always unique, as otherwise there would
be duplicated numbers in the square.

In both the matrix and the solution lists the methods of obtaining matrices/solutions from one
another are indicated in the same manner. The matrices/solutions in the second, third and
fourth columns are respectively the results of operating the transformations U, S, US (as
described) on matrices/solutions in the first column of the row. For solutions, these trans-
formations always result in a row of four essentially different solutions. For matrices this does not
necessarily hold and the positions are filled only when the resulting matrices are essentially
different. :

As explained, we call the top left-hand matrix/solution in any main block a ‘lead’ matrix/
solution, where each block of solutions has the same Frénicle quadset and the same pattern or
related patterns, i.e. (4), (5); (1), (2); (6); (3); (7), (9); (8) (10); (11), (12). Matrices/solutions
in the principal left-hand columns within the blocks, other than the ‘leads’, are either marked
by a small f (standing for the word from) followed by the index number of the matrix/solution
from which they are derived by simple interchanges shown, or by a small r (standing for the
word reversal ), or by a small ¢ (standing for the word complement). For some solutions either ¢ or
r could have been used. The letters s-r mean ‘self reversing’. ‘

The actual naming of the matrices by capital roman letters in Categories One and Two,
and by arabic numerals and lower-case letters in the (7, 5) and (2, 10) groups of Category
Three respectively, is largely the accident of how they were first written, before the full significance
of transformations and groupings had been appreciated. For example, the first matrices to be
written were the ‘magic card’ matrices labelled A, A’, B, B’, C, C’. The matrices P, P’, Q, Q’,
R, R’, T, T’ (the letters S, U having been pre-empted by the two principal transformations)
were ‘slotted in’ with the B, F and C, G blocks when the power of the block structures became
apparent. The ‘dash’ indicates the transformation U. Thus U(A) = A’ and so on. This was
a device to save letters in the labelling. Double dashes to indicate the transformation S would
have been cumbersome. Thus new letters and numerals are used for transformations, e.g.
S(H) =1, §(1.) = 2., S(a) = b. Notice that the full stop is always used after the numerals
labelling the (7, 5) matrices in order to avoid any possible confusion between these and the
digits forming the matrices.

The solutions are numbered sequentially, but labelled also to indicate the two constituent
matrices from which they are derived, the order of these being significant. The first matrix
label indicates that this matrix is in the first or radix position; the second that the matrix is
in the second or unit position. Solutions can have identical matrix labels and yet be essentially
different when two matrices can be successfully combined in different orientations. For example,
there are four solutions (namely, solutions 1, 3, 5, 7) labelled BB; and there are eight solutions,
necessarily a maximum, labelled E’E, namely solutions 293, 295, 333, 335, 373, 375, 413, 415.
This is because some matrices have special symmetries which can then be arranged in blocks
in a variety of ways. The matrix B can be combined with itself successfully in four essentially
different ways as can the matrix A, and the matrices E, E’ can be combined in sixteen essentially
different ways to give solutions.

Because the transformation U changes an ‘undashed’ matrix label into a ‘dashed’ label and
vice versa, in solutions which can be obtained from one another by the transformation U, the
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matrix labelling merely changing the ‘dash’, the two solutions have been obtained merely by
interchanging the matrices between the radix and the unit positions. This is the process of
‘reversal’. This property of reversibility can apply only to solutions in Categories One and Two,
the constituent matrices of which are all from Categories One and Two and labelled with
roman capitals, the digits in their principal diagonals always adding to six.

Since, in Category Three, (7, 5) matrices can combine only with (2, 10) matrices, the (7, 5)
matrices always in the radix position and the (2, 10) matrices always in the unit position, the
labelling in Category Three always shows an arabic numeral followed by a lower-case letter
and these solutions are not reversible as the matrices’ diagonals do not have elements adding to
Six.

To identify any randomly-found magic square given in the normal 1 to 16 notation with
those in the symmetrical list of solutions given here in the 00-33 scale 4 notation, subtract 1
from each number in the 1-16 solution and write the square in 00-33 notation. Take note of the
diagonals and determine to which category of solutions it belongs. Match the rows, columns
and Frénicle quads to a lead solution (or identify the pattern) and identify the solution within
the appropriate block. Familiarity with the magic squares makes recognition instant whatever
the orientation.

The interchanges by which solutions within blocks (and between blocks of pandiagonal and
semi-pandiagonal solutions) can be obtained from one another are mostly very simple: inter-
changes between whole rows and/or columns or between even numbers of pairs of numbers
in easily-seen patterns. The symbols ‘¢.’, ‘z.” show when solutions can be obtained from others
by using complements or reversals respectively, but these transformations are not unique.
When an interlinking is not immediately obvious a ‘new’ solution is labelled ‘Lead’. We have
not thought it necessary to show the details of links between these Lead Solutions — that they
can be obtained from one another by an even number of interchanges is already established.
There are however five particularly pretty sets of interchanges which characterize links between
solutions which have Frénicle quadsets of the same genus II and of the same genus ©, and
these are illustrated below by using the standard Frénicle magic square notation

a b c d
e f g k
) k l m

Solution 9 is derived from Solution 1 by

S
N
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Solution 17 is derived from Solution 1 by

a f I —q
e [b ¥4 [m
i o |~¢c |-k
n [Ic g “d

which interchanges rows with the principal and short diagonals.
Solution 33 which is the reversal of Solution 17 is also obtained from 17 by

a b ¢ d
— —
f e h g
—
I m 1 kK
—
g p o n

which interchanges columns with the principal and short diagonals.
Solution 25 is derived from Solution 17 by

a b c d
|
g h ¢ f
I m i k
]
n 0 ? q

which interchanges the centre and horizontal Frénicle quads.

These sets of interchanges are repeated for all six blocks of solutions with Frénicle quadsets
of genus I1. The second and third of the interchanges illustrated above give transformations for
Solutions 297 from 289 and 313 from 297 and so on in the solutions with Frénicle quadsets of
genus ®. The other interchanges within the blocks of solutions with Frénicle quadsets of
genus ® are looked after by those associated with the pattern (3) as described earlier, in
addition to the easily-seen interchanges between whole rows and/or columns and the inter-
changes by which Solution 449 can be derived from Solution 369, namely

a e ¢ g
b/f d/h
i n b
k/a m/q
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Diagonals (6 x6): (0033x0033)or (1122x1122)
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CATEGORY THREE

Diagonals (7x5): (0223x 011 3)
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MAGIC SQUARES OF ORDER FOUR

Diagonals (7x5): (0133x0023)or (1123x0122)
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AprPENDIX VII. Li1ST OF ALL SOLUTIONS
CATEGORY ONE
U S UsS
1. . 3. 4.
BB 00 12 23 31 BB 00 23 12 31 BB 33 21 10 02 BB’ 33 10 21 02
Lead 21 33 02 10 sr 32 11 20 03 sr 12 00 381 23 sr 01 22 13 30

sr 32 20 11 03 21 02 33 10 01 13 22 30 12 31 00 23
(4 13 01 30 22 () 13 30 01 22 (4) 20 32 03 11 (5) 20 03 32 11
5. 6. 7. 8.
BB 23 31 00 12 BB’ 23 00 31 12 BB 10 02 33 21 BB 10 33 02 21
F1. 02 10 21 33 11 32 03 20 r5 31 23 12 00  r6. 22 01 30 13
. 11 03 32 20 02 21 10 33 22 30 01 13 31 12 23 00
& (4) 30 22 13 01 (5) 30 13 22 o1 (4) 03 11 20 32 (5) 03 20 11 32
r ~ 9. 10. 11. 12.
= FF 00 03 32 31 FF 00 32 03 31 FF 33 3 01 02 FF 33 01 30 02
= > F1. 30 33 02 01 sr 23 11 20 12 s+ 03 00 31 32  sr 10 22 13 21
e sr 23 20 11 12 30 02 33 O1 10 13 22 21 03 31 00 32
= = (4) 13 10 21 22 (5) 13 21 10 22 (4 20 23 12 11 (5) 20 12 23 11
— 13. 14. 15. 16.
= O FF 32 31 00 03 FF 32 00 31 03 FF 01 02 33 30 FF 01 33 02 30
O f9. 02 01 30 33 11 23 12 20 ri13. 31 32 03 00  r14. 22 10 21 13
=w 11 12 23 20 02 30 01 33 22 21 10 13 31 03 32 00
29 (4 21 22 13 10 () 21 13 22 10 (4) 12 11 20 23 () 12 20 11 23
Z
%9 17. 18. 19. 20.
== A'C’ 00 33 11 22 AC 00 11 33 22 A'C’ 12 21 03 30 A.C 12 03 21 30
025 f1. 21 12 30 03 32 23 01 10 33 00 22 11 20 31 13 02
8w 32 01 23 10 21 30 12 03 20 13 31 02 33 22 00 11
=Z (1y 13 20 02 31 (2 13 02 20 31 (1) o1 32 10 23 @ o1 10 32 23
EE 21, 22, 23. 24,
A'C’ 33 00 22 11 AC 33 22 00 11 A'C’ 21 12 30 03 A.C 21 30 12 03
F17 12 21 03 30 01 10 32 23 00 33 11 22 13 02 20 31
01 32 10 23 12 03 21 30 13 20 02 31 00 11 33 22
(1 20 13 31 02 () 20 31 13 02 (1) 32 01 23 10 (2) 32 23 01 10
25. 26. 21. 28.
EG 00 33 11 22 EG 00 11 33 22 EG 03 30 12 21 E.G' 03 12 30 21
F17 30 03 21 12 23 32 10 01 33 00 22 11 20 31 13 02
23 10 32 01 30 21 03 12 20 13 31 02 33 22 00 11
(1) 13 20 02 31 (2 13 02 20 31 (1) 10 23 01 32 (2) 10 01 23 32
29. 30. 31 32 :
E'G 33 00 22 11 E.G’ 33 22 00 11 E'G 30 03 21 12  EG’ 30 21 03 12
f25 03 30 12 21 10 01 23 32 00 33 11 22 13 02 20 31
10 23 01 32 03 12 30 21 13 20 02 31 00 11 33 22
_d (1) 20 13 31 02 2) 20 31 13 02 (1) 23 10 32 ot (2 23 32 10 o1
\//;] Lt e e — — —— e — ——— — — —— — t—— — s i . e e
. { 33. 34. 35. 36
= C'A’ 00 33 11 22 CA 00 11 33 22 C'A’ 21 12 30 03 CA 21 30 12 03
= > r17. 12 21 03 30 23 32 10 01 33 00 22 11 02 13 31 20
o 23 10 32 01 12 03 21 30 02 31 13 20 33 22 00 11
=2 (1) 31 02 20 13 2 3t 20 02 13 (1) 10 23 01 32 (2) 10 01 23 32
— 37. 38. 39. 40.
= O C'A’ 33 00 22 11 CA 33 22 00 11 CA’ 12 21 03 30 CA 12 03 21 30
O r21. 21 12 30 03 10 01 23 32 00 33 11 22 31 20 02 13
~w 10 23 01 32 21 30 12 03 31 02 20 13 00 11 33 22
o (1) 02 31 13 20 2 02 13 31 20 (1) 23 10 32 o1 @2 23 32 10 01
5z a1, 42, 43. 44,
59 GE 00 33 11 22 G'E 00 11 33 22 GE 30 03 21 12 GE 30 21 03 12
a5, r25. 03 30 12 21 32 23 01 10 33 00 22 11 02 13 31 20
0325 32 01 23 10 03 12 30 21 02 31 13 20 33 22 00 11
o2 (1) 31 02 20 13 (2) 31 20 02 13 (1) o1 32 10 23 (2 01 10 32 23
='§ 45. 46. 47, 48.
ol GE 33 00 22 11 G'E 33 22 00 11 GE 03 30 12 21 G'E 03 12 30 21
r29. 30 03 21 12 01 10 32 23 00 33 11 22 31 20 02 13
01 32 10 23 30 21 03 12 31 02 20 13 00 11 33 22

(1) 02 31 13 20 (2) 02 13 31 20 (1) 32 01 23 10 (2) 32 23 01 10
VIL. 1. I, (includes reversals)
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CATEGORY ONE
U S UsS
49, 50. 51. 52.
C.C 00 12 31 23 c'c’ 00 31 12 23 C.C 33 21 02 10 Cc'C’ 33 02 21 10
f1 21 33 10 02 S~ 13 22 01 30 S—r 12 00 23 31 s—r 20 11 32 03

sr 13 01 22 30 21 10 33 02 20 32 11 03 12 23 00 31
(4) 32 20 03 11 (5) 32 03 20 11 (4 01 13 30 22 (5) 01 30 13 22
53. 54. 55. 56.
C.C 31 23 00 12  C'C’ 31 00 23 12 C.C 02 10 33 21 cc 02 33 10 21
f49. 10 02 21 33 22 13 30 01 r53. 23 31 12 00  r54. 11 20 03 32
22 30 13 01 10 21 02 33 11 03 20 32 23 12 31 00
(4 03 11 32 20 (5) 03 32 11 20 (4) 30 22 o1 13 (5) 30 o1 22 13
57. 58 59. 60

GG 00 30 13 23 G'G" 00 13 30 23 GG 33 03 20 10 G'G’ 83 20 03 10

Y |

) f49. 03 33 10 20 sr 31 22 01 12 sr 30 00 23 13 s—r 02 11 32 21
— S—1 31 01 22 12 03 10 33 20 02 32 11 21 30 23 00 13
<> (4) 32 02 21 11 (5) 32 21 02 11 (4 01 31 12 22 (5) 01 12 31 22
SF 61. 62. 63. 64.

s GG 13 23 00 30 G'G’ 13 00 23 30 G.G 20 10 33 03 G'G’ 20 33 10 03
e f57. 10 20 03 33 22 31 12 01 r61. 23 13 30 00 r62. 11 02 21 32
25N @) 22 12 31 01 10 03 20 33 11 21 02 32 23 30 13 00
T O ) 21 11 32 02 (5) 21 32 11 02 (4) 12 22 01 31 (65) 12 o1 22 31
=« 65. 66. 67. 68.

2"2 BA 00 33 22 11 B.A° 00 22 33 11 BA 12 21 30 03 B.A’ 12 30 21 03
Yo f49. 21 12 03 30 13 31 20 02 33 00 11 22 01 23 32 10
= 13 20 31 02 21 03 12 30 01 32 23 10 33 11 00 22
5u5 (1) 32 01 10 23 (2) 32 10 o1 23 (1) 20 13 02 31 (2) 20 02 13 31
85; 69. 70. 71. 72.
=<Zz BA 33 00 11 22 BA’ 33 11 00 22 B'A 21 12 03 30 B.A’ 21 03 12 30
To f65. 12 21 30 03 20 02 13 31 00 33 22 11 32 10 01 23
&= 20 13 02 31 12 30 21 03 32 01 10 23 00 22 33 11
(1) 01 32 23 10 (2) o1 23 32 10 (1) 13 20 31 02 (2) 13 31 20 02
73. 74. 5. 76.
F.E 00 33 22 11 FE 00 22 33 11 F.E 30 03 12 21 FE 30 12 03 21
f65. 03 30 21 12 31 13 02 20 33 00 11 22 01 23 32 10
31 02 13 20 03 21 30 12 01 32 23 10 33 11 00 22
(1) 32 01 10 23 (2) 32 10 01 23 (1) 02 31 20 13 (2) 02 20 31 13
77 78 79, 80.
F.E 33 00 11 22 E 33 11 00 22 FE 03 30 21 12 FE 03 21 30 12
f73. 30 03 12 21 02 20 31 13 00 33 22 11 32 10 01 23
02 31 20 13 30 12 03 21 32 01 10 23 00 22 33 11
(1) 01 32 23 10 (2) 01 23 32 10 (1) 81 02 13 20 (2) 31 13 02 20
‘ 81 82 83. 84
T AB 00 33 22 11 A'B 00 22 33 11 AB 21 12 03 30 A'B 21 03 12 30

| r65. 12 21 30 03 31 13 02 20 33 00 11 22 10 32 23 o1
— 31 02 13 20 12 30 21 03 10 23 32 o1 33 11 00 22
<l:>_4 (1) 23 10 01 32 (2 23 01 10 32 (1) 02 31 20 13 (2) 02 2 31 13
Sf_‘ 85. 86. 87. 88.

I AB 33 00 11 22 A'B 33 11 00 22 AB 12 21 30 03 AB 12 30 21 03
[~ r69. 21 12 03 30 02 20 31 13 00 33 22 11 23 01 10 32
S50 @) 02 31 20 13 21 03 12 30 23 10 01 32 00 22 33 11
onlQ) (1) 10 23 32 ot (2) 10 32 23 o1 (1) 31 02 13 20 (2) 31 13 02 20
=w 89, 90. 91, 92.

e EF 00 33 22 11 EF 00 22 33 11 EF 03 30 21 12 EF 03 21 30 12
<Z r73. 30 03 12 21 13 31 20 02 33 00 11 22 10 32 23 01
g0 13 20 31 02 30 12 03 21 10 23 32 o1 33 11 00 22
== (1) 23 10 01 32 2 23 01 10 32 (1) 20 13 02 31 (2 20 02 13 31
025 93. 04. 95. 96.

o< EF 33 00 11 22 EF 33 11 00 22 EF 30 03 12 21 EF 30 12 03 21
= r77. 03 30 21 12 20 02 13 31 00 33 22 11 23 01 10 32
EE 20 13 02 31 03 21 30 12 23 10 01 32 00 22 33 11

(1) 10 23 32 o1 (2) 10 32 23 01 (1) 13 20 31 02 2) 13 31 20 02
VIL. 2. IT, (includes reversals)
37 Vol. 306. A
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CATEGORY ONE

U S US
97. 98. 99. 100.
BC 00 11 23 32 BC 00 23 11 32 BC 33 22 10 ol B'C’ 33 10 22 oO1
f1. 22 33 o1 10 31 12 20 03 11 00 32 23 02 21 13 30
31 20 12 03 22 01 33 10 02 13 21 30 11 32 00 23
(4) 13 02 30 2 (5) 13 30 02 21 (4 20 31 03 12 (5) 20 03 31 12
101. 102. 103. 104.
B.C 23 32 00 11 B'C’ 23 00 32 11 B.C 10 01 33 22  B'C' 10 33 01 22
f97. o1 10 22 33 12 31 03 20 32 23 11 00 21 02 30 13
12 03 31 20 01 22 10 33 21 30 02 13 32 11 23 00
(4 30 21 13 02 (5) 30 13 21 02 (4 03 12 20 31 (5) 03 20 12 31
P 105. 106. 107. 108.
< FG 00 03 31 32 FG' 00 31 03 32 FG 33 30 02 01 F'G’ 33 02 30 01
1 f97. 30 33 o1 02 23 12 20 11 03 00 32 31 10 21 13 22
< 23 20 12 11 30 01 33 02 10 13 21 22 03 32 00 31
— @ 13 10 22 21 (5) 13 22 10 21 (4) 20 23 11 12 (5) 20 11 23 12
@ : 109. 110. 111. 112.
~ A= FG 31 32 00 03 F'G’ 31 00 32 03 F.G 02 Of 33 30 FG 02 33 01 30
Q)  f105. 01 02 30 33 12 23 11 20 32 31 03 00 21 10 22 13
ol 12 11 23 20 01 30 02 33 21 22 10 13 32 03 31 00
4 (4 22 21 13 10 (5) 22 13 21 10 (4 11 12 20 23 (5) 11 20 12 23
32 113. 114. 115. 116.
08 AB 00 33 12 21 AB 00 12 33 21 AB 11 22 03 30 AB 11 03 22 30
= F97. 22 11 30 03 31 23 02 10 33 00 21 12 20 32 13 01
55“ 31 02 23 10 22 30 11 03 20 13 32 01 33 21 00 12
2= (1) 13 20 o1 32 2 13 01 20 32 (1) 02 31 10 23 () 02 10 31 23
Oz 117. 118. 119. 120.
=3 AB 33 00 21 12 AB 33 20 00 12  A'B’ 22 11 30 03 AB 22 30 11 03
o F113. 11 22 03 30 02 10 31 23 00 33 12 21 13 01 20 32
02 31 10 23 11 03 22 30 13 20 01 32 00 12 33 21
(1) 20 13 32 ot () 20 32 13 01 (1) 31 02 23 10 2 31 23 02 10
121. 122. 123. 124.
EF 00 33 12 21 EF 00 12 33 21 EF 03 30 11 22 EF 03 11 30 22
f113. 30 03 22 11 23 31 10 02 33 00 21 12 20 32 13 01
23 10 31 02 30 22 03 11 20 13 32 01 33 21 00 12
(1) 13 20 01 32 (2 13 01 20 32 (1) 10 23 02 31 @ 10 02 23 31
125. 126. 127. 128.
E'F 33 00 21 12 EF 33 21 00 12 ETF 30 03 22 11 EF 30 22 03 11
F121. 03 30 11 22 10 02 23 31 00 33 12 21 13 01 20 32
10 23 02 31 03 11 30 22 13 20 01 32 00 12 33 21
(1) 2 13 32 o1 () 20 32 13 ot (1) 23 10 31 02 2 23 31 10 02
_ o 129 130. 131 132
<, C'A 00 33 12 21 CA 00 12 33 21 CA 22 11 30 03 CA’ 22 30 11 03
— F113. 11 22 03 30 23 31 10 02 33 00 21 12 01 13 32 20
< 23 10 31 02 11 03 22 30 01 32 13 20 33 21 00 12
P (1) 32 01 20 13 (2) 32 20 01 13 (1) 10 23 02 31 () 10 02 23 31
o : 133. 134, 135. 136.
ez = C'A 33 00 21 12 CA” 33 21 00 12 CA 11 22 03 30 CA’ 11 03 22 30
O F120. 22 11 30 03 10 02 23 31 00 33 12 21 32 20 01 13
O 10 23 02 31 22 30 11 03 32 01 20 13 00 12 33 21
- (1) 01 32 13 20 (2) 01 13 32 20 (1) 23 10 31 02 (2 23 31 10 02
. 137. 138. 139. 140.
=3~ GE 00 33 12 21 GE 00 12 33 21 GE 30 03 22 11 GE 30 22 03 11
Yo F129. 03 30 11 22 31 23 02 10 33 00 21 12 o1 13 32 20
= 31 02 23 10 03 11 30 22 01 32 13 20 33 21 00 12
094 (1) 32 01 20 13 (2 32 20 o1 13 (1) 02 31 10 23 (2) 02 10 31 23
8m 141. 142, 143. 144,
=Z GE 33 00 21 12 G'E 33 21 00 12 GE 03 30 11 22 GE 03 11 30 22
T F137. 30 03 22 11 02 10 31 23 00 33 12 21 32 20 01 13
&= 02 31 10 23 30 22 03 11 32 01 20 13 00 12 33 21

(1) 01 32 13 20 (2) 01 13 32 20 (1) 31 02 23 10 (2) 31 23 02 10
VII. 3. IT; (reversals opposite)
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CATeEGORY ONE
U S Us
145. 146. 147. 148.
CB 00 11 32 23 C’B’ 00 32 11 23 CB 33 22 01 10 C’B’ 33 01 22 10
r97. 22 33 10 Ot 13 21 02 30 11 00 23 32 20 12 31 03
13 02 21 30 22 10 33 01 20 31 12 03 11 23 00 32
(4) 31 20 03 12 (6) 31 03 20 12 (4 02 13 30 21 () 02 30 13 21
149. 150. 151, 152.
CB 32 23 00 11 C'B’ 32 00 23 1t CB 01 10 33 22 C’B’ 01 33 10 22
r101. 10 01 22 33 21 13 30 02 23 32 11 00 12 20 03 31
21 30 13 02 10 22 01 33 12 03 20 31 23 11 32 00
(4) 03 12 31 20 (5) 03 31 12 20 (4) 30 21 02 13 (5) 30 02 21 13
_ 153. 154, 155. 156.
<@ GF 00 30 13 23 G'F 00 13 30 23 GF 33 03 20 10 G'F’ 33 20 03 10
SR r105. 03 33 10 20 32 21 02 11 30 00 23 13 01 12 31 22
< 32 02 21 11 03 10 33 20 01 31 12 22 30 23 00 13
>_> (4) 31 01 22 12 (6) 81 22 o1 12 (4) 02 32 11 21 (5) 02 11 32 21
O 157. 158. 159. 160.
M= GF 13 23 00 30 G'F' 13 00 23 30 GF 20 10 33 03 G'F’ 20 33 10 03
— r109. 10 20 03 33 21 32 11 02 23 13 30 00 12 01 22 31
= Q) 21 11 32 02 10 03 20 33 12 22 01 31 23 30 13 00
O (4) 22 12 31 01 (5) 22 31 12 ot (4) 11 21 02 32 (6) 11 02 21 32
=w
- 161, 162. 163. 164.
52 B'A’ 00 33 21 12 BA 00 21 33 12 B'A’ 11 22 30 03 BA 11 30 22 03
=0 r113. 22 11 03 30 13 32 20 o1 33 00 12 21 02 23 31 10
== 13 20 32 o1 22 03 11 30 02 31 23 10 33 12 00 21
025 (1) 31 02 10 23 (2) 381 10 02 23 (1) 20 13 o1 32 (2) 20 01 13 32
8‘2 165. 166. 167. 168.
=% B'A’ 33 00 12 21 BA 33 12 00 21 B'A’ 22 11 03 30 BA 22 03 11 30
EE r117. 11 22 30 03 20 01 13 32 00 33 21 12 31 10 02 23
20 13 01 32 11 30 22 03 31 02 10 23 00 21 33 12
(1) 02 31 23 10 (2) 02 23 31 10 (1) 13 20 32 o1 (2) 13 32 20 o1
169. 170. 171. 172.
FE 00 33 21 12 FE 00 21 33 12 F.E 30 03 11 22 E 30 11 03 22
r121. 03 30 22 11 32 13 01 20 33 00 12 21 02 23 31 10
32 01 13 20 03 22 30 11 02 31 23 10 33 12 00 21
(1) 31 02 10 23 (2) 31 10 02 23 (1) o1 32 20 13 (2) 01 20 32 13
173. 174. 175. 176.
F.E 33 00 12 21 FE 33 12 00 21 F.E 03 30 22 11 FE 03 22 30 11
r125. 30 03 11 22 01 20 32 13 00 33 21 12 31 10 02 23
01 32 20 13 30 11 03 22 31 02 10 23 00 21 33 12
(1) 02 31 23 10 (2) 02 23 31 10 (1) 32 01 13 20 (2 32 13 01 20
. 177 178 179 180
<, A.C’ 00 33 21 12 A'C 00 21 33 12 A.C’ 22 11 03 30 A'C 22 03 11 30
! r129. 11 22 30 03 32 13 01 20 33 00 12 21 10 31 23 02
< 32 01 13 20 11 30 22 03 10 23 31 02 33 12 00 21
>> (1) 23 10 02 31 (2) 23 02 10 31 (1) o1 32 20 13 (2) 01 20 32 13
O H 181. 182, 183. 184.
M= AC 33 00 12 21 A'C 33 12 00 21 AC’ 11 22 30 03 A'C 11 30 22 03
— r123. 22 11 03 30 01 20 32 13 00 33 21 12 23 02 10 31
O 01 32 20 13 22 03 11 30 23 10 02 31 00 21 33 12
= O (1) 10 23 31 02 (2 10 31 23 02 (1) 32 01 13 20 (2) 32 13 01 20
T 186. 187. 188.
22 EG 00 33 21 12 EG' 00 21 33 12 EG 03 30 22 11 EG 03 22 30 11
oZ r137. 30 03 11 22 13 32 20 o1 33 00 12 21 10 31 23 02
Eg 13 20 32 o1 30 11 03 22 10 23 31 02 33 12 00 21
BU“ (1) 23 10 02 31 (2) 23 02 10 31 (1) 20 13 01 32 (2) 20 o1 13 32
agC 189 190. 191. 192.
oz EG 33 00 12 21 EG 33 12 00 21 EG 30 03 11 22 EG 30 11 03 22
s ri41. 03 30 22 11 20 01 13 32 00 33 21 12 23 02 10 31
o 20 13 01 32 03 22 30 11 23 10 02 31 00 21 33 12

(1) 10 23 31 02 (2) 10 31 23 02 (1) 13 20 32 o0t (2) 13 32 20 ot
VII. 4. I1, (reversals opposite)
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CaTteEcory ONE

U S Us
193. 194. 195. 196.
EJ 00 11 32 23 EJ 00 32 11 23 EJ 33 22 01 10 EJ 33 01 22 10
f97. 22 33 10 o1 31 03 20 12 11 00 23 32 02 30 13 21
31 20 03 12 22 10 33 Ot 02 13 30 21 11 23 00 32
(4) 13 02 21 30 (5) 13 21 02 30 (4 20 31 12 03 (5) 20 12 31 03
197. 198. 199. 200. »
E'K 32 23 00 11 EK 32 00 23 11 EK 01 10 33 22 EK 01 33 10 22
£193. 10 01 22 33 03 31 12 20 23 32 11 00 30 02 21 13
03 12 31 20 10 22 01 33 30 21 02 13 23 11 32 00
@ 2t 30 13 02 (5) 21 13 30 02 (4) 12 03 20 31 (5) 12 20 03 31
7 201 202. 203. 204.

<y EJ 00 12 31 23 EJ 00 31 12 23 EJ 33 21 02 10 EJ 33 02 21 10
— f193. 21 33 10 02 32 03 20 11 12 00 23 31 01 30 13 22
<> 32 20 03 11 21 10 33 02 01 13 30 22 12 23 00 31
>-F (4 13 o1 22 30  (5) 13 22 01 30 (4) 20 32 11 03 (5) 20 11 32 03
® Ly 205, 206. 207. 208.

& EJ 31 23 00 12 EJ 31 00 23 12  EJ 02 10 33 21 EJ 02 33 10 21
Q) f201. 10 02 21 33 03 32 11 20 23 31 12 00 30 01 22 13
T O 03 11 32 20 10 21 02 33 30 22 01 13 23 12 31 00
o @ 22 30 13 o1 (5) 22 13 30 01 (4 11 03 20 32 (5) 11 20 03 32
32 209. 210. 211. 212.
o) FFH 00 33 03 30 FH 00 03 33 30 FI 11 22 12 21 FI 11 12 22 21
= F193. 22 11 21 12 31 32 02 01 33 00 30 03 20 23 13 10
o0u 31 02 32 01 22 21 11 12 20 13 23 10 33 30 00 03
aI° @ 13 20 10 23 (2 13 10 20 23 (1) 02 31 o1 32 (2) 02 o1 31 32
25 213. 214. 215. 216.
T FH 33 00 30 03 FH 33 30 00 03 FI 22 11 21 12 FI 22 20 11 12
&= £200. 11 22 12 21 02 01 31 32 00 33 03 30 13 10 20 23
02 31 01 32 112 22 21 13 20 10 23 00 03 33 30
(1) 20 13 23 10 2) 20 23 13 10 (1) 31 02 32 o1 2 31 32 02 o1
217. 218. 219. 220.
FH’ 00 33 03 30 FH 00 03 33 30 FI' 12 21 11 22 FI 12 11 21 22
f209. 21 12 22 11 32 31 01 02 33 00 30 03 20 23 13 10
32 01 31 02 21 22 12 11 20 13 23 10 33 30 00 03
(1) 13 20 10 23 (2) 13 10 20 23 (1) o1 32 02 31 (2) o1 02 32 31
221. 222. 223, 224.
FH' 33 00 30 03 FH 33 30 00 03 FI' 21 12 22 11 FI 21 22 12 11
f217. 12 21 11 22 01 02 32 31 00 33 03 30 13 10 20 23
01 32 02 31 12 11 21 22 13 20 10 23 00 03 33 30
(1) 20 13 23 10 (2 20 23 13 10 (1) 32 01 31 02 (2) 32 31 01 02
225 226. 227 228

g GH 00 33 03 30 GH 00 03 33 30 GTI 22 11 2t 12 GI 22 21 11 12
— £200. 11 22 12 21 32 31 01 02 33 00 30 03 10 13 23 20
<):>_4 32 01 31 02 112 22 21 10 23 13 20 33 30 00 03
>‘H (1) 23 10 20 13 (2 23 20 10 13 (1) o1 32 02 31 (2) o1 02 32 31
2 2% 229. 230. 231. 232.

— GH 33 00 30 03 GH 33 30 00 03 GT 11 22 12 21 GI 11 12 22 21
Q) f225. 22 11 21 12 01 02 32 31 00 33 03 30 23 20 10 13
anf@) 01 32 02 31 22 21 11 12 23 10 20 13 00 03 33 30
~ (1) 10 23 13 20 (2) 10 13 23 20 (1) 32 01 31 02 (2) 32 31 01 02
—_n 233. 234. 235. 236.

52 GH 00 33 03 30 GH 00 03 33 30 GT 21 12 22 11 GI 21 22 12 11
=0 f225. 12 21 11 22 31 32 02 01 33 00 30 03 10 13 23 20
= 31 02 32 01 12 11 21 22 10 23 13 20 33 30 00 03
026 (1) 23 10 20 13 (2) 23 20 10 13 (1) 02 31 01 32 (2) 02 ot 31 32
oY 237. 238. 239. 240.
='§ G'H 33 00 30 03 GH 33 30 00 03 GI 12 2t 11 22 GI 12 11 21 22
ol £233. 21 12 22 11 02 01 31 32 00 33 03 30 23 20 10 13
02 31 01 32 21 22 12 11 23 10 20 13 00 03 33 30

(1) 10 23 13 20  (2) 10 13 23 20 (1) 31 02 32 01 (2) 31 32 02 o1
VII. 5. T, (reversals opposite)
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MAGIC SQUARES OF ORDER FOUR 515
CATEGORY ONE
U S Us
241. 242, 243. 244,
JE 00 11 23 32 JE 00 23 11 32  JE 33 22 10 01 JE 33 10 22 o1
7193. 22 33 01 10 13 30 02 21 11 00 32 23 20 03 31 12
13 02 30 21 22 01 33 10 , 20 31 03 12 1 32 00 23
(4) 31 20 12 03 (6) 31 12 20 03 (4) .02 13 21 30 (6) 02 21 13 30
245. 246. 247. 248.
K.E 23 32 00 11 K.E 23 00 32 11 K.E 10 01 33 22 K.E 10 33 01 22
r197. 01 10 22 33 30 13 21 02 32 23 11 00 03 20 12 31
30 21 13 02 01 22 10 33 03 12 20 31 32 11 23 00
(4) 12 03 31 20 (5) 12 31 03 20 (4) 21 30 02 13 (3) 21 02 30 13
P 249, 250. 251. 252.
<, JE 00 21 13 32 JE 00 13 21 32  JE 33 12 20 01 JE 33 20 12 ot
_ 7201, 12 33 01 20 23 30 02 11 21 00 32 13 10 03 31 22
< 23 02 30 11 12 01 33 20 10 31 03 22 21 32 00 13
— (4 31 10 22 03 (5) 31 22 10 03 (4) 02 23 11 30 (65) 02 11 23 30
OF 2. 254. 255. 256.
cdf K.E 13 32 00 21 KE 13 00 32 21 K.E 20 01 33 12 K.E 20 33 01 12
MO r205. 01 20 12 33 30 23 11 02 32 13 21 00 03 10 22 31
ol 30 11 23 02 01 12 20 33 03 22 10 31 32 21 13 00
4 (4) 22 03 31 10 (3) 22 31 03 10 (4) 11 30 02 23 (6) 11 02 30 23
- 257. 258, 259. 260.
5z HF 00 33 30 03 HF 00 30 33 03 LF 11 22 21 12 I'F 11 21 22 12
59 r209. 22 11 12 21 13 23 20 10 33 00 03 30 02 32 31 01
a5, 13 20 23 10 22 12 11 21 02 31 32 01 33 03 00 30
8<O (1) 31 02 o1 32 (2) 31 01 02 32 (1) 20 13 10 23 (2) 20 10 13 23
oz 261. 262. 263. 264,
=k HF 33 00 03 30 H'F 33 03 00 30 LF 22 11 12 21 I'F 22 12 11 21
af r213. 11 22 21 12 20 10 13 23 00 33 30 03 31 01 02 32
20 13 10 23 11 21 22 12 31 02 01 32 00 30 33 03
(1) 02 31 32 ot (2) 02 32 31 01 (1) 13 20 23 10 (2) 13 23 20 10
265. 266. 267. 268.
H'F' 00 33 30 03 HF 00 30 33 03 I'F 21 12 11 22 LF 21 11 12 22
r217. 12 21 22 11 23 13 10 20 33 00 03 30 02 32 31 01
23 10 13 20 12 22 21 11 02 31 32 01 33 03 00 30
(1) 31 02 01 32 (2) 381 01 02 32 (1) 10 23 20 13 (2) 10 20 23 13
269. 270. 271. 272.
HF 33 00 03 30 HF. 33 03 00 30 I'F 12 21 22 11 ILF 12 22 21 11
r221. 21 12 11 22 10 20 23 13 00 33 30 03 31 01 02 32
10 23 20 13 21 11 12 22 31 02 01 32 00 30 33 03
(1y 02 31 32 ot (2) 02 32 31 01 (1) 23 10 13 20 (2) 23 13 10 20
P | 273. 274. 275. 276.
<, H'G' 00 33 30 03 HG 00 30 33 03 '’ 22 11 12 2t LG 22 12 11 21
— r225. 11 22 21 12 23 13 10 20 33 00 03 30 01 31 32 02
< 23 10 13 20 121 22 12 01 32 31 02 33 03 00 30
P (1) 32 01 02 31 (2) 32 02 01 31 (1) 10 23 20 13 (2) 10 20 23 13
OF  am 278, 279, 280,
m‘-j H'G' 33 00 03 30 HG 33 03 00 30 I'G" 11 22 21 12 LG 11 21 22 12
MO r229. 22 11 12 21 10 20 23 13 00 33 30 03 32 02 01 31
s 10 23 20 13 22 12 11 21 32 01 02 31 00 30 33 03
[_(8 (1) o1 32 31 02 (2) 01 31 32 02 (1) 23 10 13 20 (2) 23 13 10 20
281. 282. 283. 284,
=34 HG' 00 33 30 03 H'G 00 30 33 03 LG 12 21 22 11 I'c 12 22 21 11
Vs r233. 21 12 11 22 13 23 20 10 33 00 03 30 01 31 32 02
= 13 20 23 10 21 11 12 22 01 32 31 02 33 03 00 30
3uu (1) 32 o1 02 31 (2) 32 02 01 31 (1) 20 13 10 23 (2) 20 10 13 23
B O 285. 286. 287. 288.
oz HG 33 00 03 30 H'G 33 03 00 30 LG 21 12 11 22 I'G 21 11 12 22
T r237. 12 21 22 11 20 10 13 23 00 33 30 03 32 02 01 31
o= 20 13 10 23 12 22 21 11 32 01 02 31 00 30 33 03

(1) 01 32 31 02  (2) 01 31 32 02 (1) 13 20 23 10  (2) 13 23 20 10
VII. 6. I, (reversals opposite)
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516 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BONDI

CaTEGORY ONE

U S Us
289. 290. 291. 292,
AA" 00 13 31 22 A'A 00 31 13 22  AA’ 21 32 10 03 A'A 21 10 32 03
F18. 32 21 03 10 23 12 30 01 13 00 22 31 02 33 11 20
23 30 12 01 32 03 21 10 02 11 33 20 13 22 00 31
(6) 11 02 20 33 (6) 11 20 02 33 6) 30 23 01 12 (6) 30 01 23 12
293, 294, 295, 296.
EE 00 13 31 22 EE 00 31 13 22 EE 30 23 01 12  EE 30 01 23 12
£289. 23 30 12 01 32 03 21 10 13 00 22 31 02 33 11 20
32 21 03 10 23 12 30 Of 02 11 33 20 13 22 00 31

(6) 11 02 20 33 (6) 11 20 02 33 (6) 21 32 10 03 (6) 21 10 32 03

SN 297. 298, 299, 300.
— BB 00 21 12 33 BB 00 12 21 33 BB 13 32 01 20 BB 13 01 32 20
< f289. 32 13 20 Of 23 31 02 10 21 00 33 12 30 22 11 03
— 23 02 31 10 32 20 13 01 30 11 22 03 21 33 00 12
OF @3 11 30 03 22 (3 11 03 30 22 (3) 02 23 10 31 (3) 02 10 23 31
M 301 302. 303, 304.
() PP 00 30 03 33 PP 00 03 30 33 QQ 13 32 01 20 QQ 13 01 32 20
T /207 32 13 20 01 23 31 02 10 30 00 33 03 21 22 11 12
=& 23 02 31 10 32 20 13 01 21 11 22 12 30 33 00 03
(3) 11 21 12 22 (3) 11 12 21 29 3) 02 23 10 31 (3) 02 10 23 31
3z 305. 306. 307. 308.
Yo QQ 00 21 12 33 Q.Q 00 12 21 33 PP 13 23 10 2 PP 13 10 23 20
T £297. 23 13 20 10 32 31 02 Ot 21 00 33 12 30 22 11 03
094 32 02 31 01 23 20 13 10 30 11 22 03 21 33 00 12
25 (3) 11 30 03 22 (3) 11 03 30 22 (3 02 32 01 31 (3) 02 o1 32 31
=2 309. 310. 311. 312.
T FF 00 30 03 33 FF 00 03 30 33 FF 13 23 10 20 FF 13 10 23 20
B £297. 23 13 20 10 32 31 02 01 30 00 33 03 21 22 11 12
32 02 31 01 23 20 13 10 21 11 22 12 30 33 00 03
(3) 11 21 12 22 (3) 11 12 21 22  (3) 02 32 01 31 (3) 02 o1 32 31
313 314. 315 316
CC’ 00 21 12 33 CC 00 12 21 33  C.C 32 13 20 01 C'C 32 20 13 o1
£297. 13 32 01 20 31 23 10 02 21 00 33 12 03 11 22 30
31 10 23 02 13 01 32 20 03 22 11 30 21 33 00 12
(3) 22 03 30 11 (3) 22 30 03 11 () 10 31 02 23 (3) 10 02 31 23
317. 318. 319. 320.
RR’ 00 03 30 33 R'R 00 30 03 33 T.T' 32 13 2 o1  T'T 32 20 13 01
£313. 13 32 01 20 31 23 10 03 03 00 33 30 21 11 22 12
31 10 23 02 13 01 32 20 21 22 11 12 03 33 00 30
, 3) 22 21 12 11 (3) 22 12 21 11 (3) 10 31 02 23 (3) 10 02 31 23
321. 322, 323. 324,

: T 00 21 12 33 T.I 00 12 21 33 R'R 32 31 02 01 RR' 32 02 31 Ot
> £313. 31 32 01 02 13 23 10 20 21 00 33 12 03 11 22 30
<>_4 13 10 23 20 31 01 32 02 03 22 11 30 21 33 00 12
>‘H @) 22 03 30 11 (3) 22 30 03 11 @) 10 13 20 23 (3) 10 2 13 23
2 I 325. 326. 327. 328.

— GG 00 03 30 33 G'G 00 30 03 33 GG 32 31 02 01 GG 32 02 31 01
O 313 31 32 01 02 13 23 10 20 03 00 33 30 21 11 22 12
=0 13 10 23 20 31 01 32 02 21 22 11 12 03 33 00 30
— @) 22 20 12 11 @) 22 12 21 11 (3) 10 13 20 23 (3) 10 20 13 23

VIL 7. O, (includes reversals caused by U)

PHILOSOPHICAL
TRANSACTIONS
OF
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MAGIC SQUARES OF ORDER FOUR 517
CATEGORY ONE
U S Us
329. 330. 331. 332,
AA 13 00 22 31 AA 13 22 00 31 AA’ 32 21 03 10 A’A 32 03 21 10
7289, 21 32 10 03 30 01 23 12 00 13 31 22 11 20 02 33
30 23 01 12 21 10 32 03 11 02 20 33 00 31 13 22
6) 02 11 33 20 (6) 02 33 11 20 (6) 23 30 12 o1 6) 23 12 30 o1
333, 334, 335. 336.
4 E'E 13 00 22 31 EE 13 22 00 31 E'E 23 30 12 o1 EE 23 12 30 o1
<1 f320. 30 23 o1 12 21 10 32 03 00 13 31 22 11 2 02 33
~ 21 32 10 03 30 01 23 12 11 02 20 33 00 31 13 22
:é 6) 02 11 33 20 (6) 02 33 11 20 6) 32 21 03 10 6) 32 03 21 10
> Z 337. 338. 339, 340.
O,_u BB 21 00 33 12 BB 21 33 00 12 BB 32 13 20 o1 BB 32 20 13 01
4T £207. 13 32 01 20 02 10 23 31 00 21 12 33 11 03 30 22
O 02 23 10 31 13 01 32 20 11 30 03 22 00 12 21 33
TO (B 30 11 22 03 (3) 30 22 11 03 (3) 23 02 31 10 (3) 23 31 02 10
o 34l 342. 343, 344,
o PP 21 11 22 12 PP 21 22 11 12 QQ 32 13 20 o1 Q.Q 32 2 13 01
<z £337. 13 32 01 20 02 10 23 31 121 12 22 00 03 30 33
Yo 02 23 10 31 13 01 32 20 00 30 03 33 112 21 22
= (3) 30 00 33 03 (3) 30 33 00 03 (3) 23 02 31 10 (3) 23 31 02 10
2 95 s 346. 347, 348.
8% QQ 21 00 33 12 Q.Q 21 33 00 12 PP 32 02 31 Of PP 32 31 02 ol
=% £337. 02 32 01 31 13 10 23 20 00 21 12 33 11 03 30 22
T 13 23 10 20 02 01 32 31 11 30 03 22 00 12 21 33
(3) 30 11 22 03 (3) 30 22 11 03 (3) 23 13 20 10 (3) 23 20 13 10
349, 350. 351. 352.
FF 21 11 22 12 FF 21 22 11 12 FF 32 02 31 o1 F.F 32 31 02 o1
f337. 02 32 01 31 13 10 23 20 12t 12 22 00 03 30 33
13 23 10 20 02 01 32 31 00 30 03 33 112 21 22
(3) 30 00 33 03 (3) 30 33 00 03 (3) 23 13 20 10 (3) 23 20 13 10
353 354. 355 356
CC 21 00 33 12 C'C 21 33 00 12 C.C 13 32 0L 20 C'C 13 01 32 20
f313. 32 13 20 o1 10 02 31 23 00 21 12 33 22 30 03 11
10 31 02 23 32 20 13 01 22 03 30 11 00 12 21 33
(3) 03 22 11 30 (3) 03 11 22 30 (3) 31 10 23 02 (3) 31 23 10 02
357. 358. 359. 360.
4 RR’ 21 22 11 12 RR 21 11 22 12 T.T 13 32 01 20 T'T 13 01 32 20
<7 353 32 13 20 ot 10 02 31 23 22 21 12 11 00 30 03 33
{ 10 31 02 23 32 20 13 01 00 03 30 33 22 12 21 11
i (3) 03 00 33 30 (3) 03 33 00 30 (3) 31 10 23 02 (3) 31 23 10 02
— > 361. 362. 363. 364.
OF T 21 00 33 12 TT 20 33 00 12 RR 13 10 23 20 RR 13 23 10 20
S f353. 10 13 20 23 32 02 31 01 00 21 12 33 22 30 03 11
— 32 31 02 01 10 20 13 23 22 03 30 11 00 12 21 33
O 3 03 22 11 30 (3) 03 11 22 30 (3) 31 32 01 02 (3) 31 01 32 02
TO 36 366. 367. 368.
vy go 21 22 11 12 GG 20 11 22 12 GG 13 10 23 20 G'G 13 23 10 20
£353. 10 13 20 23 32 02 31 01 22 21 12 11 00 30 03 33
32 31 02 01 10 20 13 23 00 03 30 33 22 12 21 11

(3 03 00 33 30 (3) 03 33 00 30  (3) 31 32 01 02 (3) 31 01 32 02
VII. 8. O, (includes reversals caused by U)

PHILOSOPHICAL
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OF
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518 DAME KATPMTRENOELERPERFEPEWIAND SIR HERMANN BONDI

CaTeEGcory ONE
U S US
369. 370. 371. 372.
AA 00 13 32 21 A'A” 00 32 13 21 AA 22 31 10 03 A’A" 22 10 31 03
f289. 31 22 03 10 s~ 23 11 30 02 s~ 13 00 21 32 s—r 01 33 12 20

sr 23 30 11 02 31 03 22 10 01 12 33 20 13 21 00 32
(6) 12 01 20 33 (6) 12 20 01 33 (6) 30 23 02 11 (6) 30 02 23 11
373. 374. 375. 376.
EE 00 13 32 21 EE 00 32 13 21 EE 30 23 02 11 EE 30 02 23 11
£369. 23 30 11 02  r373. 31 03 22 10 13 00 21 32  r375. 01 33 12 20
31 22 03 10 23 11 30 02 01 12 33 20 13 21 00 32
(6) 12 01 20 33 (6) 12 20 01 33 (6) 22 31 10 03 (6) 22 10 31 03
377. 378. 379. 380.
BC’ 00 22 11 33 B.C 00 11 22 33 B'C’ 13 31 02 20 B.C 13 02 31 20
£369. 31 13 20 02 23 32 01 10 22 00 33 11 30 21 12 03
23 01 32 10 31 20 13 02 30 12 21 03 22 33 00 11
(3 12 30 03 21 (3) 12 03 30 21 (3) 01 23 10 32 (3) 01 10 23 32
381. 382. 383. 384.
PR 00 30 03 33 P.R’ 00 03 30 33 QT 13 31 02 20 Q.T 13 02 31 20
f377. 31 13 20 02 23 32 01 10 30 00 33 03 22 21 12 11
23 01 32 10 31 20 13 02 22 12 21 11 30 33 00 03
(3) 12 22 11 21 () 12 11 22 21 (3) 01 23 10 32 (3 01 10 23 32
385. 386. 387. 388.
QT 00 22 11 33 QT 00 11 22 33 PR 13 23 10 20 PR’ 13 10 23 20
f377. 23 13 20 10 31 32 01 02 22 00 33 11 30 21 12 03
31 01 32 02 23 20 13 10 30 12 21 03 22 33 00 11
(3 12 30 03 21 (3) 12 03 30 21 (3) 01 31 02 32 (3 01 02 31 32
389. 390. 391. 392,
F'G 00 30 03 33 F.G' 00 03 30 33 F'G 13 23 10 20 F.G' 13 10 23 20
£377. 23 13 20 10 31 32 01 02 30 00 33 03 22 21 12 11
31 01 32 02 23 20 13 10 22 12 21 11 30 33 00 03
(3 12 22 11 21 (3) 12 11 22 21 (3) 01 31 02 32 (3 01 02 31 32
393 394. 395 396
C'B 00 22 11 33 CB 00 11 22 33 C'B’ 31 13 20 02 CB 31 20 13 02
r377. 13 31 02 20 32 23 10 01 22 00 33 11 03 12 21 30
32 10 23 01 13 02 31 20 03 21 12 30 22 33 00 11
(3 21 03 30 12 (3) 21 30 03 12 (3 10 32 0i 23 (3) 10 01 32 23
397. 398. 399, 400.
RP 00 03 30 33 RP 00 30 03 33  T.Q 31 13 20 02 TQ 31 20 13 02
r381. 13 31 02 20 32 23 10 o1 03 00 33 30 22 12 21 11
32 10 23 o1 13 02 31 20 22 21 12 11 03 33 00 30
(3) 21 22 11 12 (3) 21 11 22 12 (3 10 32 01 23 (3) 10 01 32 23
401, 402. 403. 404.
T.Q° 00 22 11 33 TQ 00 11 22 33  RJP 31 32 01 02 RP 31 01 32 02
r385. 32 31 02 01 13 23 10 20 22 00 33 11 03 12 21 30
13 10 23 20 32 02 31 01 03 21 12 30 22 33 00 11
(3 21 03 30 12 (3) 21 30 03 12 (3) 10 13 20 23 (3 10 20 13 23
405. 406. 407. 408.
GF 00 03 30 33 G'F 00 30 03 33 GF 31 32 01 02 GF 31 01 32 02
r389. 32 31 02 01 13 23 10 20 03 00 33 30 22 12 21 11
13 10 23 20 32 02 31 01 22 21 12 11 03 33 00 30

(3) 21 22 11 12 (3) 21 11 22 12 (3) 10 13 20 23 (3) 10 20 13 23
VII. 9. ©, (includes reversals)
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MAGIC SQUARES OF ORDER FOUR 519
CaTeEcory ONE
U S Us
409. 410, a11. 412,
AA 13 00 20 32 AA” 13 20 00 32  AA 31 22 03 10 AA’ 31 03 22 10
£369. 22 31 10 03 30 02 23 11 r409. 00 13 32 21 r410. 12 20 01 33
30 23 02 11 22 10 31 03 12 01 20 33 00 32 13 21
6) 0L 12 33 20 (6 0L 33 12 20 (6 23 30 (1 02  (6) 23 11 30 02
413, a1a, 415. 416.

| EE 13 00 21 32 EE 13 21 00 32  EE 23 30 1 02  EE 23 11 30 02
P £409. 30 23 02 11 22 10 31 03  r413. 00 13 32 21 r4l4 12 20 01 33
< 22 31 10 03 30 02 23 11 12 01 20 33 00 32 13 21
2 6) oL 12 33 20 (6 01 33 12 20  (6) 3L 22 03 10  (6) 31 03 22 10
P 417, 418, 419. 420.

ol B'C’ 22 00 33 11 B.C 22 33 00 11  B'C 31 13 20 02  BC 31 20 13 02
M= £377. 13 31 02 20 01 10 23 32 00 22 11 33 1203 30 21
=0 01 23 10 32 13 02 31 20 12 30 03 21 00 11 22 33
e 3) 30 12 21 03  (3) 30 20 12 03  (3) 23 01 32 10  (3) 23 32 Ol 10
i 421 422, 493, 424,
PR 22 12 21 11 PR 2 20 12 11 QT 31 13 20 02 QT 31 20 13 02
34 f417. 13 31 02 20 01 10 23 32 12 22 11 21 00 03 30 33
§O 01 23 10 32 13 02 31 20 00 30 03 33 12 11 22 21
I (3 30 00 33 03  (3) 30 33 00 03  (3) 23 OL 32 10  (3) 23 32 01 10
095 425. 426, 427, 428,
DS QT 22 00 33 11 Q.22 33 00 t1 PR 31 01 32 02 PR 31 32 01 02
Oz F47. 01 31 02 32 13 10 23 20 00 22 11 33 1203 30 21
=3 13 23 10 20 o1 02 31 32 12 30 03 21 00 11 22 33
= 3 30 12 21 03 (3 30 20 12 03  (3) 23 13 20 10  (3) 23 20 13 10
429, 430. 431, 432,
FG 22 12 20 11 F.G 2 21 12 11 FG 31 0t 32 02  FG 31 32 01 02
417, 01 31 02 32 13 10 23 20 12 22 11 21 00 03 33
13 23 10 20 01 02 31° 32 00 30 03 33 12 11 22 21
(3 30 00 33 03 (3 30 33 00 03  (3) 23 13 20 10  (3) 23 20 13 10
433 434 435 436
CB 22 00 33 11 CB 22 33 00 11  CB’ 13 31 02 20  CB 13 02 31 20
P47 31 13 20 02 10 01 32 23 00 22 11 33 21 30 12
10 32 01 23 31 20 13 02 21 03 30 12 00 11 22 33
(3 03 20 12 30  (3) 03 12 20 30  (3) 32 10 23 01  (3) 32 23 10 O1
437. 438. 439. 440,

) RP 22 21 12 11 RP 22 12 20 11 T.Q 13 31 02 20  T'Q 13 02 31 20
P r421. 30 13 20 02 10 01 32 23 o1 22 11 12 00 30 03 33
~ 10 32 01 23 3120 13 02 00 03 30 33 21 11 22 12
— 3 03 00 33 30  (3) 03 33 00 30  (3) 32 10 23 0L  (3) 32 23 10 01
< 441, 442, 443, 444,
>(F T.Q 22 00 33 11 T'Q 22 33 00 1t  RP 13 10 23 20 RP 13 23 10 20
oI r425. 10 13 20 23 31 01 32 02 00 22 11 33 21 30 03 12
e 3132 01 02 10 20 13 23 21 03 30 12 00 11 22 33
O (3) 03 20 12 30  (3) 03 12 2L 30  (3) 32 31 02 01  (3) 32 02 31 01
enl@) 445. 446. 447. 448.

[ GF 22 20 12 11 GF 22 12 21 11 GF 13 10 23 20 GF 13 23 10 20
rd420. 10 13 20 23 31 01 32 02 21 22 11 12 00 30 03 33

31 32 01 02 10 20 13 23 00 03 30 33 21 11 22 12

(3 03 00 33 30  (3) 03 33 00 30  (3) 32 31 02 01  (3) 32 02 31 01

VII. 10. ©, (includes reversals)
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520 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BOND
CaTEGOrRY ONE
U US
449. 451, 452,
HH 00 31 32 03 00 32 31 03 I'r 22 13 10 21 I.I 22 10 13 2
f369. 13 22 21 10 23 11 12 20 S~ 31 00 03 32 7 01 33 30 O
s—r 23 12 11 20 13 21 22 10 0L 30 33 02 31 03 00 3
(6) 30 o1 02 33 30 02 01 33 (6) 12 23 20 11 (6) 12 20 23 1
453. 455, 456.
HH 00 31 32 03 00 32 31 03 .U 12 23 20 11 I'1 12 20 23 1
f449. 23 12 11 20 13 21 22 10 31 00 03 32 r455. 01 33 30 O
13 22 21 10 23 11 12 20 01 30 33 02 31 03 00 3
(6) 30 ot 02 33 30 02 01 33 (6) 22 13 10 21 (6) 22 10 13 2
457. 459, 46.0,
JH 00 22 11 33 00 11 22 33 JI 31 13 20 02 JI' 31 2 13 O
f449. 13 31 02 20 23 32 01 10 22 00 33 11 12 03 30 2
23 01 32 10 13 02 31 20 12 30 03 21 22 33 00 1
(3) 30 12 21 03 30 21 12 03 (3) 01 23 10 32 @) 01 10 23 3
461. 463. 464.
MH 00 12 21 33 00 21 12 33 MI 31 13 20 02 M.I 31 20 13 O
f457. 13 31 02 20 23 32 01 10 12 00 33 21 22 03 30 1
23 01 32 10 13 02 31 20 22 30 03 11 12 33 00 2
(3) 30 22 11 03 30 11 22 03 3) 01 23 10 32 3) 01 10 23 3
465. 467, 468.
M'H 00 22 11 33 00 11 22 33 M.I 31 23 10 02 MT 31 10 23 0
f457. 23 31 02 10 13 32 01 20 22 00 33 11 12 03 30 2:
13 01 32 20 23 02 31 10 12 30 03 21 22 33 00 1:
(3) 30 12 21 03 30 21 12 03 (3) 01 13 20 32 3) 01 20 13 3
469. 471, 472,
JH 00 12 21 33 00 21 12 33 J.I 31 23 10 02 J.r 31 10 23 O«
S457. 23 31 02 10 13 32 01 20 12 00 33 21 22 03 30 11
13 01 32 20 23 02 31 10 22 30 03 11 12 33 00 21
(3) 30 22 11 03 30 11 22 03 (3) 01 13 20 32 (3) 01 20 13 3¢
473. 475. 476.
H.]J 00 22 11 33 00 11 22 33 LJ. 13 31 02 20 I'_] 13 02 31 2
r457. 31 13 20 02 32 23 10 01 22 00 33 11 21 30 03 1<
32 10 23 01 31 20 13 02 21 03 30 12 22 33 00 11
(3) 03 21 12 30 03 12 21 30 (3) 10 32 01 23 3) 10 01 32 2¢
477, 479. 480.
HM 00 21 12 33 00 12 21 33 I.M 13 31 02 20 I'M 13 02 31 2C
r461. 31 13 20 02 32 23 10 01 21 00 33 12 22 30 03 11
32 10 23 01 31 20 13 02 22 03 30 11 21 33 00 12
(3) 03 22 11 30 03 11 22 30  (3) 10 32 01 23 (3 10 01 32 23
481, 483. 484,
HM 00 22 11 33 00 11 22 33 IM 13 32 01 20 I'M 13 01 32 20
r465. 32 13 20 01 31 23 10 02 22 00 33 11 21 30 03 12
31 10 23 02 32 20 13 01 21 03 30 12 22 33 00 11
3) 03 21 12 30 03 12 21 30 (3) 10 31 02 23 (3) 10 02 31 23
485. 487. 488.
H.J 00 21 12 33 00 12 21 33 I.J 13 32 01 20 I'J 13 01 32 20
r469. 32 13 20 01 31 23 10 02 21 00 33 12 22 30 03 11
31 10 23 02 32 20 13 01 22 03 30 11 21 33 00 12
(3) 03 22 11 30 03 11 22 30 (3) 10 31 02 23 (3) 10 02 31 23

VILI. 11. ©; (includes reversals)
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MAGIC SQUARES OF ORDER FOUR 521
CATEGORY ONE
U S Us
489. 490. 491. 492,
HT 31 00 03 32 H.I 31 03 00 32 HT 13 22 21 10 HI 13 21 22 10
f449. 22 13 10 21 12 20 23 11 r489. 00 31 32 03 r490. 30 02 01 33
12 23 20 11 22 10 13 21 30 01 02 33 00 32 31 03
(6) 0L 30 33 02 (6) 0L 33 30 02 6) 23 12 11 20 ) 23 11 12 20
493. 404, 495. 496.
HI 31 00 03 32 HI 31 03 00 32 HI 23 12 11 20 HI 23 11 12 20
P f489. 12 23 20 11 22 10 13 21 r494. 00 31 32 03 r493. 30 02 01 33
<« 22 13 10 21 12 20 23 11 30 01 02 33 00 32 31 03
a3 (6) 01 30 33 02 (6) 01 33 30 02 (6) 13 22 21 10 (6) 13 21 22 10
§ . 497. 498. 499. 500.
oF KH 22 00 33 11 K.H 22 33 00 11 KI 13 31 02 20 KI 13 02 31 20
2 f457. 31 13 20 02 01 10 23 32 00 22 11 33 30 21 12 03
— 01 23 10 32 31 20 13 02 30 12 21 03 00 11 22 33
51 @) (3) 12 30 03 21 (3) 12 03 30 21 (3) 23 01 32 10 (3) 23 32 01 10
O 501. 502. 503. 504.
=w N.H 22 30 03 11 N'H 22 03 30 11 NI 13 31 02 20 N.I' 13 02 31 20
—n F497. 31 13 20 02 01 10 23 32 30 22 11 03 00 21 12 33
3z 01 23 10 32 31 20 13 02 00 12 21 33 30 11 22 03
EQ (3) 12 00 33 21 (3) 12 33 00 21 (3) 23 01 32 10 (3) 23 32 01 10
&b, 505. 506. 507. 508.
Q<0 N'H 22 00 33 11 N.H 22 33 00 11 NI 13 01 32 20 NI 13 32 01 20
lo}4 f497. 01 13 20 32 31 10 23 02 00 22 11 33 30 21 12 03
=§ 31 23 10 02 01 20 13 32 30 12 21 03 00 11 22 33
o= (3) 12 30 03 21 (3) 12 03 30 21 (3) 23 31 02 10 (3) 23 02 31 10
509. 510. 511. 512.
K.H 22 30 03 11 K.H 22 03 30 I KJI 13 01 32 20 KX 13 32 01 20
f497. 01 13 20 32 31 10 23 02 30 22 (1 03 00 21 12 33
31 23 10 02 01 20 13 32 00 12 21 33 30 11 22 03
(3) 12 00 33 21 (3) 12 33 00 21 (3) 23 31 02 10 (3) 23 02 31 10
513 514. 515 516
HK 22 00 33 11 H'K 22 33 00 11 LK 31 13 20 02 'K 31 20 13 02
r497. 13 31 02 20 10 01 32 23 00 22 11 33 03 12 21 30
10 32 01 2 13 02 31 20 03 21 12 30 00 11 22 33
(3 21 03 30 12 (3) 21 30 03 12 (3) 32 10 23 ot (3) 32 23 10 o1
517. 518. 519. 520.
HN 22 03 30 i1 H'N’ 22 30 03 11 LN’ 31 13 20 02 I'N 31 20 13 02
. r501. 13 31 02 20 10 o1 32 23 03 22 11 30 00 12 21 33
<[ 10 32 01 23 13 02 31 20 00 21 12 33 03 11 22 30
T (3) 21 00 33 12 (3) 21 33 00 12 (3) 32 10 23 ot (3) 32 23 10 01
< 521. 522, 523. 524.
S HN 22 00 33 1t H'N 22 33 00 11 LN 31 10 23 02 I'N' 31 23 10 02
O H r505. 10 31 02 23 13 01 32 20 00 22 11 33 03 12 21 30
pdﬁ 13 32 01 20 10 02 31 23 03 21 12 30 00 11 22 33
mO (3) 21 03 30 12 (3) 21 30 03 12 (3) 32 13 20 01 (3) 32 20 13 o1
T O 525. 526. 527. 528.
e HK 22 03 30 i1 HK 22 30 03 11 LK. 31 10 23 02 I'K 31 23 10 02
r509. 10 31 J2 23 13 01 32 20 03 22 11 30 00 12 21 33
13 32 01 20 10 02 31 23 00 21 12 33 03 11 22 30

(3) 21 00 33 12 -3 21 33 00 12 (3) 32 13 20 o1 (3) 32 20 13 o1
VII. 12. @, (includes reversals)
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522

CATEGORY Two

529.
X.G’
Lead

M
533.
X.G'
¢ 529.

()
537.
V.R’

£529.

(7)
541.

¢ 537,

DAME KAPPHIPRE RO RAENEBE A AND STR HERMANN BONDI

00

03
32

33
02
30
01

33
22
10
01

00
11
23
32

20
11
23
12

13
02
30
21

530,

X'G

)
534.

X'G

(9)
538.
V'R

9)
542.
V'R

00
03
31
32

33

0t

20
23
11

13
10
22
21

33
10

01

00
23
11
32

33
10
22
01

22
33
01
10

11

32
23

22
33
01
10

02
33
01
30

31
20
12
03

30
13
21
02

532.
Y'G

(10)
536.
Y'G

(10)

540.
w'T

22
01
33

11
32
00
23

Us

02
21
13
30

31
12
20
03

30
21
13
02

02
01
33
30

11
12
20
23

22
21
13
10

13
22
10
21

20
11
23
12

13
22
10
21

00
11
23
32

01
22
10
33

32
11
23
00

33
02
30
01

32
31
03
00

01
02
30
33

20
31
03
12

13
02
30
21

20
31
03
12

(10)
550.

(10)
554.

w'T

(10)
558.

w'T

(10)

20
23
11
12

13
10
22
21

33
30
02
o1

32
03
31
00

01
30
02
33

VII. 13.

00
23
11
32

01
10
22
33

32
23
11
00

Solutions 529-544:

20
03
31

12

(reversals opposite)
Solutions 545-560: X,

Xy

11
00
32
23

22
01
33
10

11
32
00
23

22
13
21
10

11
20
12
23

22
13
21
10

31
20
12
03

02
13
21
30

31
20
12
03

02
33
01
30

31
32
00
03

02
01
33
30

(9)
552.
X'G

(9)
556.
V'R

(9)
560.
V'R

9

22
33
01
10

11
00
32
23

31
12
20
03

02
21
13
30

31
12
20
03

22
21
13
10

11
12
20
23

22
21
13
10

02
01
33
30

31
00
32
03

02
33
01
30
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MAGIC SQUARES OF ORDER FOUR 523
Catecory Two
U S Us
561. 562. 563. 564.
G'X 00 33 02 31 G.X 00 02 33 31 GY 22 13 20 11 GY 22 20 13 11
r529. 13 22 11 20 30 32 01 03 33 00 31 02 10 12 23 21
30 01 32 03 13 11 22 20 10 23 12 21 33 31 00 02
(7) 23 10 21 12 9) 23 21 10 12 (8) 01 30 03 32 (10) 01 03 30 32
565. 566. 5617. 568.
G'X 33 00 31 02 G.X" 33 31 00 02 GY 11 20 13 22 GY 11 13 20 22
¢561. 20 11 22 13 03 01 32 30 00 33 02 31 23 21 10 12
03 32 01 30 20 22 11 13 23 10 21 12 00 02 33 31
() 10 23 12 21 (9) 10 12 23 21 (8) 32 03 30 01  (10) 32 30 03 Ot
d
) 569. 570. 571. 572,
~ R'V 00 33 02 31 V'R 00 02 33 3t W. T’ 22 30 03 11 wWT 22 03 30 11
— r537. 30 22 11 03 13 32 01 20 33 00 31 02 10 12 23 21
< 13 01 32 20 30 11 22 03 10 23 12 21 33 31 00 02
>~E (7 23 10 21 12 (9) 23 21 10 12 (8) 01 13 20 32 (10) 01 20 13 32
oL s 574. 575. 576.
Cd o R'V 33 00 31 02 V'R 33 31 00 02 W.T' 11 03 30 22 WT 11 30 03 22
SN @) c569. 03 11 22 30 20 01 32 13 00 33 02 3t 23 21 10 12
: O 20 32 01 13 03 22 11 30 23 10 21 12 00 02 33 3t
o (M 10 23 12 21 (9) 10 12 23 21 (8) 32 20 13 ot (10) 32 13 20 ot
2“2 5717 578 579 580
O o) G'Y 02 33 00 31 GY 02 00 33 31 G'X 22 11 20 13 GX 22 20 11 13
T = r545. 11 22 13 20 32 30 01 03 33 02 31 00 10 12 21 23
8@ w 32 01 30 03 11 13 22 20 10 21 12 23 33 31 02 00
BZ0  (® 21 10 23 12 (10) 21 23 10 12 (7) 01 32 03 30 (9 01 03 32 30
Sz  ssi. 582. 583. 584.
E é G'Y 31 00 33 02 GY' 31 33 00 02 G'X 11 22 13 20 G.X 11 13 22 20
B = ¢B877. 22 11 20 13 01 03 32 30 00 31 02 33 23 21 12 10
01 32 03 30 22 20 11 13 23 12 21 10 00 02 31 33
(8) 12 23 10 2t (10) 12 10 23 21 (7) 32 01 30 03 9) 32 30 01 03
585. 586. 5817. 588.
W. T 02 10 23 31 WT 02 23 10 31 V.R’ 22 11 20 13 V'R 22 20 11 13
r553. 11 22 13 20 32 30 01 03 10 02 31 23 33 12 21 00
32 01 30 03 11 13 22 20 33 21 12 00 10 31 02 23
(8) 21 33 00 12 (10) 21 00 33 12 (7) 01 32 03 30 9) 0t 03 32 30
589. 590. 591. 592.
W. T 31 23 10 02 WT 31 10 23 02 V.R" 11 22 13 20 V'R 11 13 22 20
¢585. 22 11 20 13 01 03 32 30 23 31 02 10 00 21 12 33
01 32 03 30 22 20 11 13 00 12 21 33 23 02 31 10
(8) 12 00 33 21 (10) 12 33 00 21 (1) 32 01 30 03 (9 32 30 01 03
4 VII. 14 (reversals opposite)
\/;f]f “: Solutions 561-567: X, Solutions 577-592: X,
=
P
O H
2
= QO
=
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OF
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CatEcory Two

U S uUs
593. 594, ' 595, 596.
XF 00 33 20 13 X'F 00 20 33 13 Y.F 21 32 01 12 YF 21 01 32 12
£529. 32 21 12 ol 03 23 10 30 33 00 13 20 02 22 31 1t
03 10 23 30 32 12 21 ot 02 31 22 11 33 13 00 20
(7) 31 02 11 22 (9 31 11 02 22 (8) 10 03 30 23 (10) 10 30 03 23
597. 598. 599. 600.
XF 33 00 13 20 X'F 33 13 00 20 Y.F 12 01 32 21 YF 12 32 01 21
c593. 01 12 21 32 30 10 23 03 00 33 20 13 31 11 02 22
30 23 10 03 01 21 12 32 31 02 11 22 00 20 33 13
(02 31 22 1t (9 02 22 31 11 (8) 23 30 03 10 (10) 23 03 30 10
, 601. 602. 603. 604.
— V.’ 00 33 20 13 VP 00 20 33 13 W.Q 21 03 30 12 WwQ 21 30 03 12
Y £593. 03 21 12 30 32 23 10 01 33 00 13 20 02 22 31 11
— 32 10 23 01 03 12 21 30 02 31 22 11 33 13 00 20
<> (1 31 02 11 22 (9 31 11 02 22 (8) 10 32 01 23 (10) 10 01 32 23
> ~ 605 ' 606. 607. 608
O[_u V.P' 33 00 13 20 V'P 33 13 00 20 w.Q 12 30 03 21 w'Q 12 03 30 21
e 601, 30 12 21 03 - 01 10 23 32 00 33 20 13 31 11 02 22
O 01 23 10 32 30 21 12 03 31 02 11 22 00 20 33 13
T O (7 02 31 22 11 (9 02 22 31 11 (8) 23 01 32 10 (10) 23 32 01 10
. 609 610. 611 612
2“2 YF 20 33 00 13 Y'F 20 00 33 13 XF 21 12 01 32 X'F 21 01 12 32
08 £593. 12 21 32 01 23 03 10 30 33 20 13 00 02 22 11 31
= 23 10 03 30 12 32 21 o1 02 11 22 31 33 13 20 00
85“' (8) 11 02 31 22 (10) 11 31 02 22 (M 10 23 30 03 (9 10 30 23 03
A © 613. 614. 615. 616.
Oz Y.FF 13 00 33 20 Y'F 13 33 00 20 XF 12 21 32 o1 X'F 12 32 21 o1
TS ¢609. 21 12 .01 32 10 30 23 03 00 13 20 33 31 11 22 02
oy 10 23 30 03 21 01 12 32 31 22 11 02 00 20 13 33
(8) 22 31 02 11 (10) 22 02 31 11 (1) 23 10 03 30 (9 23 03 10 30
617. . 618. 619. 620.
w.Q' 20 02 31 13 wWQ 20 31 02 13 V. 21 12 01 32 VP 21 01 12 32
£609. 12 21 32 01 23 03 10 30 02 20 13 31 33 22 11 00
23 10 03 30 12 32 21 o1 33 11 22 00 02 13 20 31
(8) 11 33 00 22 (10) 11 00 33 22 (1) 10 23 30 03 (9) 10 30 23 03
621. 622. 623. 624.
W.Q 13 31 02 20 wWQ 13 02 31 20 VP 12 21 32 o1 VP 12 32 21 ot
c617. 21 12 01 32 10 30 23 03 31 13 20 02 00 11 22 33
10 23 30 03 21 01 12 32 00 22 11 33 31 20 13 02
(8) 22 00 33 11 (10) 22 33 00 11 (1) 23 10 03 30 (9 23 03 10 30

VII. 15. (reversals opposite)
Solutions 593 -608: X Solutions 609-624: X,

A

p
”/\\ \\
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MAGIC SQUARES OF ORDER FOUR 525
Catecory Two
U S Us
625. 626. 627. 628.
FX 00 33 02 31 F.X' 00 02 33 31 FY 12 23 10 21 FY 12 10 23 21
r593. 23 12 21 10 30 32 01 03 33 00 31 02 20 22 13 11
30 01 32 03 23 21 12 10 20 13 22 11 33 31 00 02
(7 13 20 11 22 (9) 13 11 20 22 (8) 01 30 03 32 (10) 01 03 30 32
629. \ 630. 631. 632.
FFX 33 00 31 02 F.X' 33 31 00 02 FY 21 10 23 12 FY 21 23 10 12
¢625. 10 21 12 23 03 01 32 30 00 33 02 31 13 11 20 22
03 32 01 30 10 12 21 23 13 20 11 22 00 02 33 31
) (N 20 13 22 11 (9 20 22 13 11 (8) 32 03 30 01 (10) 32 30 03 01
633. 634. 635. 636.
= PV 00 33 02 31 P.V' 00 02 33 31 QW 12 30 03 21 QW 12 03 30 21
< r601. 30 12 21 03 23 32 01 10 33 00 31 02 20 22 13 11
S 23 01 32 10 30 21 12 03 20 13 22 11 33 31 00 02
o (7 13 20 11 22 (9 13 11 20 22 (8) 01 23 10 32 (10) 01 10 23 32
e ) 637. 638. 639. 640.
= PV 33 00 31 02 P.V' 33 31 00 02 QW 21 03 30 12 Q.W 21 30 03 12
O (633 03 21 12 30 10 01 32 23 00 33 02 31 13 11 20 22
= O 10 32 01 23 03 12 21 30 13 20 11 22 00 02 33 31
=w (1) 20 13 22 11 (9 20 22 13 11 (8) 32 10 23 ot (10) 32 23 10 Ot
) _———— — —— — —_——_——— — — — — — — —— — — — —
52 641 642 643 644
59 F'Y 02 33 00 31 FY' 02 00 33 31 F'X 12 21 10 23 F.X' 12 10 21 23
- r609. 21 12 23 10 32 30 01 03 33 02 31 00 20 22 11 13
025 32 01 30 03 21 23 12 10 20 11 22 13 33 31 02 00
8%: (8) 11 20 13 22 (10) 11 13 20 22 (7) 01 32 03 30 (9) 01 03 32 30
=< 645. 646. 647. 648.
e F'Y 31 00 33 02 FY' 31 33 00 02 FFX 21 12 23 10 F.X' 21 23 12 10
c641, 12 21 10 23 01 03 32 30 00 31 02 33 13 11 22 20
01 32 03 30 12 10 21 23 13 22 11 20 00 02 31 33
(8) 22 13 20 11 (10) 22 20 13 11 (1) 32 01 30 03 (9) 32 30 01 03
649. 650. 651. 652.
QW 02 20 13 31 QW 02 13 20 31 PY 12 21 10 23 PY 12 10 21 23
r617. 21 12 23 10 32 30 01 03 20 02 31 13 33 22 11 00
32 01 30 03 21 23 12 10 33 11 22 00 20 31 02 13
(8) 11 33 00 22 (10) 11 00 33 22 (1) 01 32 03 30 (9 01 03 32 30
653. 654. 655. 656.
QW 31 13 20 02 QW 31 20 13 02 PY 21 12 23 10 PY 21 23 12 10
c649. 12 21 10 23 01 03 32 30 13 31 02 20 00 11 22 33
01 32 03 30 12 10 21 23 00 22 11 33 13 02 31 20
(8) 22 00 33 11 (10) 22 33 00 11 (1) 32 01 30 03 (9) 32 30 01 03
<& ol VILI. 16. (reversals opposite)
~ Solutions 625-640: X,  Solutions 641-656: X,
2
P
O H
e
A,
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526 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BONDI

CATEGORY THREE

U S Us
657. 658. 659. 660.
19.; 00 33 10 23 19 00 10 33 23 20.; 30 13 20 03 20 30 20 13 03
Lead 13 30 03 20 21 31 02 12 33 00 23 10 01 11 32 22
21 02 31 12 13 03 30 20 01 32 11 22 33 23 00 10
(1) 32 o1 22 11 (9) 32 22 01 11 8) 02 21 12 31 (10) 02 12 21 31
661. 662. - 663. 664.
195 33 00 23 10 19 33 23 00 10 20.j 03 20 13 30 20" 03 13 20 30
c657. 20 03 30 13 12 02 31 21 00 33 10 23 32 22 01 11
12 31 02 21 20 30 03 13 32 0L 22 11 00 10 33 23
(7) 01 32 11 22 (9) 01 11 32 22 (8 31 12 21 02  (10) 31 21 12 02
> | 665. 666. . 667. 668.
gy otlm 00 33 10 23  2Unm’ 00 10 33 23 22k 30 21 12 03 22k 30 12 21 03
- f657. 21 30 03 12 13 31 02 20 33 00 23 10 01 11 32 22
< 13 02 31 20 21 03 30 12 01 32 11 22 33 23 00 10
— (7) 32 01 22 11 (9 32 22 o1 11 (8) 02 13 20 31 (10) 02 20 13 31
o : 669. 670. 671. 672.
e~ 2tm 33 00 23 10 21'm’ 33 23 00 10 22k 03 12 21 30 22k 03 21 12 30
= O c665. 12 03 30 21 20 02 31 13 00 33 10 23 32 22 01 11
ol 20 31 02 13 12 30 03 21 32 01 22 11 00 10 33 23
=S (7 01 32 11 22 (9) o1 11 32 22 (8) 31 20 13 02 (10) 31 13 20 02
22 673 674. 675 676
Ug 23.j 10 33 00 23 23’ 10 00 33 23 24.; 30 03 20 13 24'j/ 30 20 03 13
= f657. 03 30 13 20 31 21 02 12 33 10 23 00 01 11 22 32
a5, 31 02 21 12 03 13 30 20 01 22 11 32 33 23 10 00
850 (8) 22 01 32 11 (10) 22 32 o1 11 (1) 02 31 12 21 (9) 02 12 31 21
Sz 677. 678. 679. 680.
=Z 23.j 23 00 33 10 23’7/ 23 33 00 10 245 03 30 13 20 24/ 03 13 30 20
-y c673. 30 03 20 13 02 12 31 21 00 23 10 33 32 22 11 01
02 31 12 21 30 20 03 13 32 11 22 01 00 10 23 33
(8) 11 32 01 22 (10) 11 01 32 22 (7) 31 02 21 12 (9) 31 21 02 12
681. 682. 683. 684.
25k 10 01 32 23 25.8 10 32 01 23 26'm 30 03 20 13 26.m’ 30 20 03 13
f673. 03 30 13 20 31 21 02 12 01 10 23 32 33 11 22 00
31 02 21 12 03 13 30 20 33 22 11 00 01 23 10 32
(8) 22 33 00 11 (10) 22 00 33 11 (7) 02 31 12 21 (9) 02 12 31 21
685. 686. 687. 688.
25k 23 32 01 10 254 23 01 32 10 26'm 03 30 13 20 26.m’ 03 13 30 20
c681. 30 03 20 13 02 12 31 21 32 23 10 01 00 22 11 33
02 31 12 21 30 20 03 13 00 11 22 33 32 10 23 o1
8) 11 00 33 22 (10) 11 33 00 22 (7) 31 02 21 12 (9) 31 21 02 12
g VII. 17. (no reversals)
T Solutions 657-672: X, Solutions 673-688: X;,
<@
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MAGIC SQUARES OF ORDER FOUR 527
CATEGORY THREE
U S Us
689. 690. 691. 692.
11 00 33 10 23 1 00 10 33 23 12 11 32 01 22 12f 11 01 32 22
Lead 32 11 22 01 21 31 02 12 33 00 23 10 20 30 13 03
21 02 31 12 32 22 11 01 20 13 30 03 33 23 00 10
(7) 13 20 03 30 (9) 13 03 20 30 (8) 02 21 12 31 (10) 02 12 21 31
693. 694. 695. 696.
13 33 00 23 10 13 33 23 00 10 14 22 01 32 11 14f 22 32 01 11
c689. 01 22 11 32 12 02 31 21 00 33 10 23 13 03 20 30
12 31 02 21 01 11 22 32 13 20 03 30 00 10 33 23
ol (7) 20 13 30 03 (9) 20 30 13 03 (8) 31 12 21 02 (10) 31 21 12 02
4 697. 698. 699. 700.
— 15 00 33 10 23 15¢ 00 10 33 23 164 11 21 12 22 15 11 12 21 22
< £689. 21 11 22 12 32 31 02 Ot 33 00 23 10 20 30 13 03
> P 32 02 31 01 21 22 11 12 20 13 30 03 33 23 00 10
olm (1) 13 20 03 30 (9) 13 03 20 30 8) 02 32 01 31 (10) 02 01 32 31
= 701. 702. 703. 704.
O 17.¢ 33 00 23 10 17¢ 33 23 00 10 186 22 12 21 11 18 22 21 12 1i
O c697. 12 22 11 21 01 02 31 32 00 33 10 23 13 03 20 30
= 01 31 02 32 12 11 22 21 13 20 03 30 00 10 33 23
(7) 20 13 30 03 (9 20 30 13 03 (8) 31 01 32 02 (10) 31 32 01 02
= | e o e e e o e
53 705 706. 707, 708
T= 14.¢ 10 33 00 23 14¢ 10 00 33 23 13.f° 11 22 01 32 13F 11 01 22 32
8““‘ £689. 22 11 32 01 31 21 02 12 33 10 23 00 20 30 03 13
A<O 31 02 21 12 22 32 11 01 20 03 30 13 33 23 10 00
9‘2 (8) 03 20 13 30 (10) 03 13 20 30 (1 02 31 12 21 (9 02 12 31 21
T 709. 710. 711. 712,
= 12 23 00 33 10 12¢ 23 33 00 10 11.f 22 11 32 01 1ty 22 32 11 01
¢705. 11 22 01 32 02 12 31 21 00 23 10 33 13 03 30 20
02 31 12 21 11 01 22 32 13 30 03 20 00 10 23 33
(8) 30 13 20 03 (10) 30 20 13 03 (7) 31 02 21 12 (9) 31 2t 02 12
713. 714. 715. 716.
18¢ 10 20 13 23 18’ 10 13 20 23 17.h 11 22 01 32 17K 11 01 22 32
£705. 22 11 32 01 31 21 02 12 20 10 23 13 33 30 03 00
31 02 21 12 22 32 11 ot 33 03 30 00 20 23 10 13
(8) 03 33 00 30 (10) 03 00 33 30 (7) 02 31 12 21 (9 02 12 31 21
717. 718. 719. 720.
16 23 13 20 10 16'g 23 20 13 10 156 22 11 32 o1 15" 22 32 11 01
c713. 11 22 01 32 02 12 31 21 13 23 10 20 00 03 30 33
02 31 12 21 11 01 22 32 00 30 03 33 13 10 23 20

(8) 30 00 33 03 (10) 30 33 00 03 (7) 31 02 21 12 (9) 31 21 02 12

VII. 18. (no reversals)
Solutions 689-704: X, Solutions 705-720: X,

>~
o[—<
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528  DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BONDI

CATEGORY THREE

U S UsS
721. 722. 723, 724,
1.5’ 00 33 12 21 11h 00 12 33 21 124 10 31 02 23 12z 10 02 31 23
Lead 31 10 23 02 22 30 03 11 33 00 21 12 20 32 13 01
22 03 30 11 31 23 10 02 20 13 32 01 33 21 00 12
() 13 20 01 32 (9 13 01 20 32 (8) 03 22 1L 30  (10) 03 11 22 30
725. 726. 727. 728.
13.6° 33 00 21 12 136 33 21 00 12 144 23 02 31 10 14z 23 31 02 10
c721. 02 23 10 31 11 03 30 22 00 33 12 21 13 01 20 32
11 30 03 22 02 10 23 31 13 20 01 32 00 12 33 21
(7) 20 13 32 01 (9 20 32 13 01  (8) 30 11 22 03  (10) 30 22 11 03
o 720 730. 731, 732.
4 154 00 33 12 21 15 00 12 33 21  16c 10 22 11 23 16%’ 10 11 22 23
— F721 22 10 23 1 31 30 03 02 33 00 21 12 20 32 13 o1
< 31 03 30 02 22 23 10 11 20 13 32 01 33 21 00 12
>~ (1) 13 20 01 32 (9 13 01 20 32  (8) 03 31 02 30  (10) 03 02 31 30
@) : 733, 734, 735. 736.
&2~ 174 33 00 21 12 17’ 33 21 00 12  18c 23 11 22 16  18¢ 23 22 11 10
Q7. 11 23 10 22 02 03 30 31 00 33 12 2f 13 01 20 32
ol 02 30 03 31 11 10 23 22 13 20 01 32 00 12 33 21
~ (M 2013 32 00 (9 20 32 13 00 (8§ 30 02 31 03  (10) 30 31 02 03
29 737 738 739 740
0§ 00 33 30 03 9. 00 30 33 03 10 20 23 10 13 10 20 10 23 13
o Lead 23 20 13 10 11 21 12 22 33 00 03 30 01 31 32 02
a5, 112 21 22 23 13 20 10 01 32 31 02 33 03 00 30
850 () 32 01 02 31 (9 32 02 01 3t (8 12 11 22 20  (10) 12 22 11 21
Oz 741. 742. 743. 744,
= 95 33 00 03 30 9. 33 03 00 30 10 13 10 23 20 107 13 23 10 20
o= c737. 10 13 20 23 22 12 21 11 00 33 30 03 32 02 01 31
22 21 12 11 10 20 13 23 32 01 02 31 00 30 33 03
(7 01 32 31 02 (9 O 31 32 02 (8 20 22 i1 12  (10) 21 11 22 12
745, 746. 747 748.
9m 00 33 30 03 9w’ 00 30 33 03  10% 20 11 22 13 104 20 22 11 13
F37. 11 20 13 22 23 21 12 10 33 00 03 30 01 31 32 02
23 12 21 10 1 13 20 22 01 32 31 02 33 03 00 30
() 32 01 02 31 (9 32 02 01 31 (8 12 23 10 21 (10) 12 10 23 21
749, 750. 751. 752.
9m 33 00 03 30  9m’ 33 03 00 30  10% 13 22 11 20 104 13 11 22 20
cT45. 22 13 20 11 10 12 21 23 00 33 30 03 32 02 01 31
10 21 12 23 22 20 13 11 32 01 02 3t 00 30 33 03

(1) 01 32 31 02 (9) 01 31 32 02 (8) 21 10 23 12 (10) 21 23 10 12

VIL. 19. (no reversals)
Solutions 721-736: X, Solutions 737-752: X,
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CATEGORY THREE

753.
llb/
Lead

®3)
757.

00
23
32
11

00
23
32
11

00
32
23
11

31
20
03
12

12
20
03
31

31
20
03
12

02
13
30
21

21
13
30
02

02
13
30
21

Downloaded from rsta.royalsocietypublishing.org

33
10
01
22

33
10
01
22

33
01
10
22

754.

1.b

®3)

758.

3.d

3

762.

5.d

00
32
23
11

00
32
23
11

00
23
32
11

02
30
13
21

21
30
13
02

02
30
13
21

U

31
03
20
12

12
03
20
31

31
03
20
12

33
01
10
22

33
01
10
22

33
10
01
22

755.

’ ot
a

3)
759.

®3)
763.

20
31
12
03

20
12
31
03

20

31
12
03

23
00
11
32

23
00
11
32

32
00
11
23

10
33
22
01

10
33
22
01

01
33
22
10

MAGIC SQUARES OF ORDER FOUR

13
02
21
30

13
21
02
30

13
02
21
30

756.

20
12
31

20
31

12

03

20
12
31
03

US

10
22
33

10
22
33
01

01
22
33
10

23
11
00
32

23
11
00
32

32
11
00
23

529

00
21
32
13

00
32
21
13

10
22
03
31

31
22
03
10

23
11
30
02

02
11
30
23

33
12
01
20

33
01
12
20

00
32
21
13

00
21
32
13

23
30
11
02

10
03
22
31

31
03
22
10

33
01
12
20

33
12
01
20

®3)
775.
4'd’

3)
779.

3)

22
10
31
03

22
31
10
03

11
23
02
30

3)
776.
4.d

®3)
780.
6.d’

22
31
10
03

22
10
31
03

12
20
33
01

01
20
33
12

21
13
00
32

32
13
00
21

11
02
23
30

11
23
02
30

00
31
32
03

00
32
31
03

00
32
31
03

21
22
13
10

10
22
13
21

23
11
20
12

12
11
20
23

23
11
20
12

Solutions 753-768:

33
02
o1
30

33
01
02
30

33
01
02
30

3)

790.

9¢

®3)

794.

9.c/

®3)

798.

glal

®3)

00
32
31
03

00
31
32
03

00
31
32
03

@,

23
20
11
12

12
20
11
23

23
20
11
12

10
13
22
21

21
13
22
10

10
13
22
21

33
02
01
30

33
02
01
30

®3)
795.
10.d

®)
799.
10’

®3)

22
10
21
13

22
21
10
13

22
10
21
13

VII. 20. (no reversals)
Solutions 769-784: @,

32
00
03
31

Solutions 785-800: @,

11
23
12
20

®3)
792.
10.d

®3)
796.
10'd’

®)
800.
10.5/

®3)

22
21
10
13

31
03
00
32
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530 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BONDI

CATEGORY THREE

U S Us
801. 802. 803. 804.
19.2 00 13 20 33 192 00 20 13 33 20.6' 30 31 02 03 20.6' 30 02 31 03
Lead 31 30 03 02 12 32 01 21 13 00 33 20 22 10 23 11
12 01 32 21 31 03 30 02 22 23 10 11 13 33 00 20
(3 23 22 11 10 (3 23 11 22 10 (3 01 12 21 32 (3 01 21 12 32
805. 806. 807. 808.
21.c/ 00 22 11 33 21% 00 11 22 33 22.4' 30 31 02 03 22'd 30 02 31 03
/801, 31 30 03 02 12 32 01 2t 22 00 33 11 13 10 23 20
12 01 32 21 31 03 30 02 13 23 10 20 22 33 00 11
(3 23 13 20 10 (3 23 20 13 10 (3) o1 12 21 32 (3 01 21 12 32
809. 810. 811. 812.
21 00 13 20 33 21 00 20 13 33 22'd 30 12 21 03 22.4° 30 21 12 03
f801. 12 30 03 21 31 32 01 02 13 00 33 20 22 10 23 11
31 01 82 02 12 03 30 21 22 23 10 11 13 33 00 20
(3) 23 22 11 10 (3) 23 11 22 10 (3 01 31 02 32 (3) 01 02 31 32
813. 814, 815. 816.
192 00 22 11 33 19. 00 11 22 33 20 30 12 21 03 20.6' 30 21 12 03
f801. 12 30 03 21 31 32 01 02 22 00 33 11 13 10 23 20
31 01 32 02 12 03 30 21 13 23 10 20 8 22 33 00 11
(3 23 13 20 10 (3) 23 2 13 10 (3) 01 31 02 32 (3 01 02 31 32
817 818 819 820
23.6' 12 01 32 21 23’ 12 32 01 21 244’ 30 31 02 03 24'a 30 02 31 03
f801. 31 30 03 02 00 20 13 33 01 12 21 32 22 10 23 11
00 13 20 33 31 03 30 02 22 23 10 11 01 21 12 32
(3) 23 22 11 10 (3) 23 11 22 10 (3 13 00 33 20 (3) 13 33 00 20
821. 822. 823. 824.
25.d 12 22 11 21 25'd’ 12 11 22 21 2. 30 31 02 03 26'c’ 30 02 31 03
f817. 31 30 03 02 00 20 13 33 22 12 21 11 01 10 23 32
00 13 20 33 31 03 30 02 01 23 10 32 22 21 12 11
(3) 23 o1 32 10 (3) 23 32 01 10 (3) 13 00 33 20 (3) 13 33 00 20
825. 826. 827. 828.
25'd’ 12 01 32 21 254 12 32 01 21 26'c’ 30 00 33 03 26.c 30 33 00 03
f817. 00 30 03 33 31 20 13 02 01 12 21 32 22 10 23 11
31 13 20 02 00 03 230 33 22 23 10 11 01 21 12 32
(3) 23 22 11 10 (3) 23 11 22 10 (3) 13 31 02 20 (3) 13 02 31 20
829. 830. 831. 832,
23’ 12 22 11 21 23.6' 12 11 22 21 24 30 00 33 03 240’ 30 33 00 03
f817. 00 30 03 33 31 20 13 02 22 12 21 11 01 10 23 32
31 13 20 02 00 03 30 33 01 23 10 32 22 21 12 11

(3) 23 01 32 10 (3) 23 32 01 10 (3) 13 31 02 20 (3) 13 02 31 20

VII. 21. (no reversals)
Solutions 801-816: @, Solutions 817-832: @
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MAGIC SQUARES OF ORDER FOUR - 531
CATEGORY THREE
U S Us
833. 834. 835. 836.
l.e 00 01 32 33 1'¢ 00 32 01 33 2.f 31 30 03 02 2f 31 03 30 02
Lead 30 31 02 03 23 21 12 10 01 00 33 32 22 20 13 11
23 12 21 10 30 02 31 03 22 13 20 11 01 33 00 32
(3) 13 22 11 20 (3) 13 11 22 20 (3) 12 23 10 21 3) 12 10 23 21
837. 838. 839. 840.
3.g 00 22 11 33 g 00 11 22 33 4.h 31 30 03 02 4 31 03 30 02
f833. 30 31 02 03 23 21 12 10 22 00 33 11 01 20 13 32
23 12 21 10 30 02 3L 03 01 13 20 32 22 33 00 11
(3) 13 01 32 20 (3) 13 32 ot 20 (3) 12 23 10 21 (3) 12 10 23 21
841. 842, 843. 844,
5.6 00 01 32 33 5'g 00 32 01 33 6.4 31 23 10 02 6'h 31 10 23 02
f833. 23 31 02 10 30 21 12 03 01 00 33 32 22 20 13 11
30 12 21 03 23 02 31 10 22 13 20 11 01 33 00 32
(3) 13 22 11 20 3) 13 11 22 20 (3) 12 30 03 21 (3) 12 03 30 21
845. 846. 847. 848.
7.6 00 22 11 33 e 00 11 22 33 8.f' 31 23 10 02 8.f 31 10 23 02
f833. 23 31 02 10 30 21 12 03 22 00 33 11 01 20 13 32
30 12 21 03 23 02 31 10 01 13 20 32 22 33 00 11
(3) 13 01 32 20 (3) 13 32 01 20  (3) 12 30 03 21 (3) 12 03 30 21
849 850. 851 5
1.f 01 00 33 32 1/ 01 33 00 32 2.e 30 31 02 03 2’ 30 02 31 03
f833. 31 30 03 02 22 20 13 11 00 01 32 33 23 21 12 10
22 13 20 11 31 03 30 02 23 12 21 10 00 32 01 33
(3) 12 23 10 21 (3) 12 10 23 21 (3) 13 22 11 20 (3) 13 11 22 20
853. 854. 855. 856.
3.0 01 23 10 32 3R 0 01 10 23 32 4.¢" 30 31 02 03 4'g 30 02 31 03
f849. 31 30 03 02 22 20 13 11 23 01 32 10 00 21 12 33
22 13 20 11 31 03 30 02 00 12 21 33 23 32 0t 10
(3) 12 00 33 21 (3) 12 33 00 21 (3) 13 22 11 20  (3) 13 11 22 20
857. 858. 859. 860.
54 0L 00 33 32 5% 01 33 00 32 6.g 30 22 11 03 6’ 30 11 22 03
f849. 22 30 03 11 31 20 13 02 00 01t 32 33 23 21 12 10
31 13 20 02 22 03 30 11 23 12 21 10 00 32 01 33
3) 12 23 10 21 (3) 12 10 23 21 (3) 13 31 02 20 (3) 13 02 31 20
861. 862. 863. 864.
7.f 23 10 32 Tf 01 10 23 32 8.¢’ 30 22 1 03 8¢ 30 11 22 03
f849. 22 30 03 11 31 20 13 02 23 01 2 10 00 21 12 33
13 20 02 22 03 30 11 00 12 21 33 23 32 01 10
(3) 12 00 33 21 (3) 12 33 00 21 (3) 13 31 02 20 (3) 13 02 31 20

VII. 22. (no reversals)
Solutions 833-848: @ Solutions 849-8G4: @,
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532 DAME KATHLEEN OLLERENSHAW AND SIR HERMANN BOND

CATEGORY THREE

U S Us
865. 866. 867. 868.
112 00 33 20 13 1'a 00 20 33 13 126 10 31 22 03 126 10 22 31 C
Lead 31 10 03 22 12 32 21 01 33 00 13 20 02 30 23 1
12 21 32 o1 31 03 10 22 02 23 30 11 33 13 00 ¢
(11) 23 02 11 30 (12) 23 11 02 30 (11) 21 12 01 32 (12) 21 01 12 3
869. 870. 871. 872.
132 33 00 13 20 132 33 13 00 20 144 23 02 11 30 145 23 11 02 3
¢865. 02 23 30 11 21 01 12 32 00 33 20 13 31 03 10 2
21 12 01 32 02 30 23 11 31 10 03 22 00 20 33 1
(11) 10 31 22 03 (12) 10 22 31 03 (11) 12 21 32 o1 (12) 12 32 21 0
873 874. 875 876
1j 00 33 01 32 Lj/ 00 01 33 32 2 2 23 11 12 2.7 20 11 23 1
Lead 23 20 12 11 30 31 03 02 33 00 32 01 10 21 13 2
30 03 31 02 23 12 20 11 10 13 21 22 33 32 00 0
11y 13 10 22 21 (12) 13 22 10 21 (11) 03 30 02 31 (12) 03 02 30 3
8717. 878. 879. 880.
1j 33 00 32 o1 1 33 32 00 Of 25 13 10 22 21 2.7 13 22 10 2
¢873. 10 13 21 22 03 02 30 31 00 33 01 32 23 12 20 1
03 30 02 31 10 21 13 22 23 20 12 11 00 01 33 3
(11) 2 23 11 12 (12) 20 11 23 12 (11) 30 03 31 02 (12) 30 31 03 0

VII. 23. (no reversals)
Solutions 865-868: ©Q; Solutions 869-872: Q,
Solutions 873-876: Qg Solutions 877-880: Q,


http://rsta.royalsocietypublishing.org/

i
;
1
:
|
:
|
|
!
)
i
|

THE ROYAL /
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

dbrecht Direr’s ‘Melancholia’ (The British Museum). Note the four-by-four magic square in the upper
right-hand corner in which the date 1514 appears in the two middle cells of the bottom row.
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